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Take-home messages

* Location matters
» Risk & type of post-fire disturbance depends
on location in the channel network.

* Pros & cons to fire
 Fires cause damage, but they also have
Important ecological benefits; aquatic
organisms have evolved with these landscape
disturbances and show adaptation to them.




Outline

» Overview of fire effects, and the types & causes of
post-fire erosion

« Geomorphic process domains & styles of wood
Input

« Effects of fire on channel morphology & aquatic
habitat



Study Area

 Mountain basins of western U.S.
» Case studies from northern Rocky
Mountains, ldaho Batholith



Physical Effects of Fire

» |oss of vegetation (alters rainfall
Interception, surface roughness, root
strength)
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+ ground heating (causes hydrophobic soils,
decreased soil permeability, particle’ =
breakdown)
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Result: altered basin hydrology

e increased surface runoff

» flashier flows

* more erosive power both on
hillslopes & 1n channels
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Types of Postfire Erosion

Surface erosion
» sheetwash & rilling

Mass wasting
» landslides

Sediment—water flows
* debris flows S
« hyperconcentrated flows - =
* flash floods




Surface Erosion:
Sheetwash & Rilling

Location: hillslopes

Process: overland flow due
to soil saturation, or rainfall
rates greater than soil
Infiltration capacity

rainfall (1) > infiltration (1) = surface runoff
» sheetwash = unchanneled flow
* rilling = channeled flow, but not fluvial



Mass Wasting: Landslide Erosion

Location: planar & convergent &=
hillslopes Mo ey
Process: en masse failure of Pl
coherent soil wedge dueto RO
steep slopes, adverse pore | : “
pressure within the soil, and
Insufficient soil/root cohesion

essed in tension where it crosses a soil shear zone (after O'Loughiin
and Ziemer [1982]).
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Debris Flows

« Muddy, viscous slurry of water and sediment (silt to
boulders) & wood




Types of Debris Flows

Landslide-initiated
* Process: liguefaction of landslide as it moves, or
liguefaction of downslope soil when landslide

Impacts It
» Location: hillslopes & head of channel network
(initiation in 0-15 order channels)

landslide

debris flow



Types of Debris Flows

“Bulking”

* Process: rheologic transition from fluid overland
flow to viscous debris flow by “bulking”
(downstream addition of sediment or removal of
water)

» Location: ~4"-6t order
channels




Hyperconcentrated Flows

* Process: rapid input of sediment
relative to local discharge
(e.g., gullying, bank failure,
landslide, debris flow)

» Location: commonly in 15t - ~5t
order channels




Mechanics of Erosion (simplified)

Erosion occurs when applied shear stress exceeds critical
stress for soil/sediment motion

T> T,
Shear stress depends on topographic slope (S) and water
depth (h)

7= oghS
Flow depth is a power-function of drainage area

h= oA
Critical shear stress iIs a function of soil/sediment properties
(sediment size, cohesion, frictional resistance, etc.)

Erosion =1 (S, A, sediment/soil characteristics)



Erosional Process Domains

log drainage area
(discharge surrogate)

« Each erosional process has a
specific domain (slope—
drainage area combinations
needed to support that style of

fluvial :
erosion {7 erosion)
_ « Process boundaries based on
~ theoretical equations
overland
flow erosion
“p B
seepage .-
crosion landslide™*~.
erosion
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log s]ope (modified from Montgomery & Dietrich 1994)



Application

« use DEMSs to map erosional
process domains [f (A,S)]

e assess assoclated hazards
for infrastructure & natural
resources

shallow landsliding

Unconditionally Unstable
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Stable Contours: Sm, Grid: 2m, ps: 1600, phi: 45
Unconditionally Stable

Dietrich & Montgomery (1998)

Figure 10.



Process Domains & Fire

Consequences of fire:

« more efficient runoff (greater
flow for given drainage area)

 decreased soil/sediment
resistance to erosion

 Result: potential changes in

the location, spatial extent
Toitdslide™ and type of erosional
erosioit-, processes
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Altered hydrology (q) or
sediment characteristics (T)
changes the potential spatial
extent of shallow landsliding

* NetMap [Benda et al.]
« USGS [Cannon et al.]

Unconditionally Unstable

Unstoble | — —

Stable Contours: 5m, Grid: 2m, ps: 1600, phi: 45
Unconditionally Stable

Dietrich & Montgomery (1998) Figure 10.



Postfire Erosion

 Depends on the interaction of 5 factors

» topography (slope)

» drainage area (cumulative discharge)

» soil/sediment characteristics (geologlc
history, bioturbation)

 weather (type, magnitude, timing of
precip.)

» fire characteristics (spatial extent,
severity, time since fire)
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Temporal changes
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Multiple events & prolonged period of disturbance
* burned basins can produce multiple disturbances over years

to decades following fire

Why does disturbance persist?
« much of the initial hillslope erosion is moved into

temporary storage elements along valley floors that provide
longer-term sediment supply during subsequent floods




Outline

» Overview of fire effects, and the types & causes of
post-fire erosion

» Geomorphic process domains & styles of wood
Input

o Effects of fire on channel morphology & aquatic
habitat



Spatial distribution of geomorphic process domains

Hillslopes Wind and/or Fire

deb riS'ﬂ OW domai n b éround Saturation
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Flooding
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Channel Migration
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Flooding

[Montgomery, 1999]



Why do we care about the debris-flow
domain?

|t typically comprises 80-90% of the stream length in mountain
basins [Stock and Dietrich, 2003; Buffington et al., 2004]

- Debris-flow domain

= Fluvial domain



Why do we care about the debris-flow
domain?

 Debris flows are the primary mechanism for delivery of
sediment and wood after fires.




Debris-flow routing

« steep, confined channels,
coupled to hillslopes

* debris/hyperconcentrated
flows can traverse entire
network to the mainstem
confluence

—— overland flow

— landslide

— landslide-initiated
debris-flow

- gullying = hypercon. flow

~— bulking debris flow

—— hypercon. flow/fluvial

debris fan






Sediment yield in central Idaho
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<  Gully erosion (Istanbulluoglu et al., 2003)
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Expect high sediment yields in next few decades due to recent fires
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Lower Snake Basin: > 20% burned in last decade.




Middle Fork Salmon River Watershed

Middle Fork Salmon
Fire Perimeters

Cumulative
1990-2013

Fires by Year

B 2010-2013
B 2000-2009
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ost-fire wood Input

 Toppling of fire-damaged trees
 Debris-flow entrainment and routing
« Snow avalanches




Wood Inputs

Increase complexity:
« Topographic variation (pool scour, bar deposition)
« Flow variation (depth, velocity, area)

 Grain size variation (hydraulic sorting into patches)
« Hyporheic exchange

Grneer D50=23.7 mm, 6,=1.04 ¢
G fin-vffin» D50=8.4 mm, 6,=0.93 ¢
S, D5p=2.0 mm

Z, D5p=0.065 mm

@ Debris pile (branches, wood chips)
* On-bank tree projecting into channel
Contour interval=0.1 m
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Outline

Effects of fire on channel morphology and aquatic
habitat

* In headwater rivers that experience debris flows
(steep confined rivers)

* In headwater rivers buffered from debris flows
(moderate-gradient unconfined valleys)

* In mainstem rivers that receive debris-flow slugs
(major tributary confluences)




Headwater rivers in the debris-flow zone

« How do fires and debris flows affect
» Channel morphology
« Stream temperature
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Methods

« Channel width & reach type

 Treatments:
» Recent post-fire debris flow (< 1 yr.)

 Older post-fire debris flow (10 yr.) -
» Undisturbed (over historical record) -
» Space for time
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Headwater rivers in the debris-flow zone

e Stream temperature
* How do fires and debris flows affect streamside
vegetation, shading, and water temperature over short
time scales (1-50 years)?
* How quickly does vegetation and stream temperature
recover following channel disturbance?

M




Disturbance type & hypothesized vegetation
(degree of stream shading)

No Recent Disturbance Debris Flow Only

Fire Only

\U

Fire & Debris Flow

W



Fire only Fire & debris flow



Study design & measurements

« 4 treatments (undisturbed, debris-flow only, fire only, fire &
debris flow)

« 32 streams in the Boise National Forest, southern Idaho Batholith
« \Water temperature recorded during summer months
« Sampled vegetation every 20 m over reach lengths of 300-500 m:
— Took hemispherical photos to estimate solar radiation
— Counted woody stems within 1 m of channel
 Space for time substitution
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Hemispherical photography
Shaded Site

June 23rd Shading Data

Solar Radiation (W/m2)
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Disturbance & Recovery Trajectory: Debris Flow Only
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Headwater rivers buffered from debris flows

« How does fire affect channel morphology & aguatic
habitat over longer time scales (10°’s-100’s of years) in
channels decoupled from direct debris-flow inputs?




Channel Succession

Channel Complexity

0 100 200 300



Study design

3 treatments (15-20, 90-130, > 150 years since fire)

19 streams in the Idaho Batholith

Controlled for elevation, drainage area, valley slope, geology, land

use

Moderate slope (2-4%), unconfined floodplain channels
* Decoupled from direct hillslope inputs and debris-flow passage
 Focus on post-fire changes in basin hydrology, sediment

supply, and proximal riparian characteristics
Space for time
Fish-bearing




Measurements

» Channel morphology (channel geometry, pool
characteristics, grain size)

 Riparian canopy (tree density, basal area per unit area)

» Large woody debris (amount, location, function, size)




Results

» None of the 14 morphologic characteristics varied between
treatments (o = 0.10)

« 2 out of 27 wood characteristics varied: number of pieces
above bankfull, number of non-functional pieces (o =
0.10)...largely the same pieces of wood 1n both cases

» Differences in wood characteristics had little effect on
channel morphology & associated aquatic habitat




Conclusion

 The lack of morphologic variability between age classes of
channels implies that wildfire disturbance does not have a
long-term effect on channels of this stream type,
suggesting that moderate-gradient, unconfined channels
act as relatively stable, potentially productive, refugia for
aguatic organisms.




Mainstem rivers receiving post-fire debris-
flow slugs

» How do sediment pulses affect channel
morphology and aquatic habitat?




Debris Fans Locally Alter: Hydraulics & channel units
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[Benda et al.
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« But debris flows cause
distal effects as the
sediment wave propagates
downstream




Field and numerical studies

oise River
T = rY‘ji-?)'(’T’

“Quéens R

—Eampground:

o 3 post-fire debris flows In
neighboring basins

 Repeat topographic surveys of
debris fans and mainstem river

* Numerical model of fan
evolution and network sediment
routing (Cui, 2005)




Predicted Longitudinal Profile, Middle Fork Boise River
Near Atlanta
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Bed profile predicted to recover to pre-disturbance conditions within 10 years in this steep (1.4%),
confined river.



Median grain size (D50, mm)
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Dynamic (transient) responses




Manu Esteve 2000










Take-home messages

* L_ocation matters
» Risk & type of post-fire disturbance depends
on location in the channel network &
associated process domain.

* Pros & cons to fire
 Fires cause damage, but they also have
Important ecological benefits; aquatic
organisms have evolved with these landscape
disturbances and show adaptation to them.




