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Take-home messages

• Location matters
• Risk & type of post-fire disturbance depends 

on location in the channel network.

• Pros & cons to fire
• Fires cause damage, but they also have 

important ecological benefits; aquatic 

organisms have evolved with these landscape 

disturbances and show adaptation to them.



Outline

• Overview of fire effects, and the types & causes of 

post-fire erosion

• Geomorphic process domains & styles of wood 

input

• Effects of fire on channel morphology & aquatic 

habitat



Study Area

• Mountain basins of western U.S.

• Case studies from northern Rocky 

Mountains, Idaho Batholith 



Physical Effects of Fire

• loss of vegetation (alters rainfall 

interception, surface roughness, root 

strength)

• ground heating (causes hydrophobic soils, 

decreased soil permeability, particle 

breakdown)



Result: altered basin hydrology

• increased surface runoff

• flashier flows

• more erosive power both on 

hillslopes & in channels



Types of Postfire Erosion

Surface erosion

• sheetwash & rilling

Mass wasting

• landslides

Sediment–water flows

• debris flows

• hyperconcentrated flows

• flash floods



Location:  hillslopes

Process:  overland flow due 

to soil saturation, or rainfall 

rates greater than soil 

infiltration capacity

• sheetwash = unchanneled flow

• rilling = channeled flow, but not fluvial

Surface Erosion: 

Sheetwash & Rilling

rainfall (I) > infiltration (i)  surface runoff



Mass Wasting: Landslide Erosion

Location:  planar & convergent 

hillslopes

Process:  en masse failure of 

coherent soil wedge due to 

steep slopes, adverse pore 

pressure within the soil, and 

insufficient soil/root cohesion



Sediment–Water 

Flows

• channelized flow of 

water–sediment 

mixture

• rheology and 

erosive power 

varies with relative 

content of water vs. 

sediment

(Pierson & Costa 1987)



Debris Flows

• Muddy, viscous slurry of water and sediment (silt to 

boulders) & wood



Types of Debris Flows

Landslide-initiated

• Process: liquefaction of landslide as it moves, or 

liquefaction of downslope soil when landslide 

impacts it

• Location: hillslopes & head of channel network 

(initiation in 0-1st order channels)

landslide

debris flow



Types of Debris Flows

“Bulking”

• Process: rheologic transition from fluid overland 

flow to viscous debris flow by “bulking” 

(downstream addition of sediment or removal of 

water)

• Location: 4th-6th order 

channels



Hyperconcentrated Flows

• Process: rapid input of sediment  

relative to local discharge

(e.g., gullying, bank failure, 

landslide, debris flow)

• Location: commonly in 1st - ~5th

order channels



Mechanics of Erosion (simplified)

Erosion occurs when applied shear stress exceeds critical 

stress for soil/sediment motion

t > tc

Shear stress depends on topographic slope (S) and water 

depth (h)

t = rghS

Flow depth is a power-function of drainage area

h = aAb

Critical shear stress is a function of soil/sediment properties 

(sediment size, cohesion, frictional resistance, etc.) 

Erosion = f (S, A, sediment/soil characteristics)



Erosional Process Domains

(modified from Montgomery & Dietrich 1994)

• Each erosional process has a 

specific domain (slope–

drainage area combinations 

needed to support that style of 

erosion)
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• Process boundaries based on 

theoretical equations



Application

• use DEMs to map erosional 

process domains [f (A,S)] 

• assess associated hazards 

for infrastructure & natural 

resources

shallow landsliding

Dietrich & Montgomery (1998)



Process Domains & Fire

(modified from Montgomery & Dietrich 1994)

Consequences of fire:

• more efficient runoff (greater 

flow for given drainage area)

• decreased soil/sediment 

resistance to erosion

• threshold for erosion (critical 

drainage area–slope 

combination) decreases

• Result:  potential changes in 

the location, spatial extent 

and type of erosional 

processes



Altered hydrology (q) or 

sediment characteristics (T) 

changes the potential spatial 

extent of shallow landsliding

Dietrich & Montgomery (1998)

• NetMap [Benda et al.]

• USGS [Cannon et al.]



Postfire Erosion

• Depends on the interaction of 5 factors

• topography (slope)

• drainage area (cumulative discharge)

• soil/sediment characteristics (geologic 

history, bioturbation)

• weather (type, magnitude, timing of 

precip.)

• fire characteristics (spatial extent, 

severity, time since fire)



Temporal changes
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Multiple events & prolonged period of disturbance

• burned basins can produce multiple disturbances over years 

to decades following fire

Why does disturbance persist?

• much of the initial hillslope erosion is moved into 

temporary storage elements along valley floors that provide 

longer-term sediment supply during subsequent floods



Outline

• Overview of fire effects, and the types & causes of 

post-fire erosion

• Geomorphic process domains & styles of wood 

input

• Effects of fire on channel morphology & aquatic 

habitat



Spatial distribution of geomorphic process domains 

[Montgomery, 1999]

debris-flow domain



Debris-flow domain

Fluvial domain

• It typically comprises 80-90% of the stream length in mountain 

basins [Stock and Dietrich, 2003; Buffington et al., 2004]

Why do we care about the debris-flow 

domain?



• Debris flows are the primary mechanism for delivery of 

sediment and wood after fires.

Why do we care about the debris-flow 

domain?



Debris-flow routing

• steep, confined channels, 

coupled to hillslopes

• debris/hyperconcentrated 

flows can traverse entire 

network to the mainstem 

confluence





Sediment yield in central Idaho

Expect high sediment yields in next few decades due to recent fires

[Goode et al., 2012]



Lower Snake Basin: > 20% burned in last decade.



Middle Fork Salmon 

Fire Perimeters

Cumulative

1990-2013

52% of the 

basin burned 



Post-fire wood input

• Toppling of fire-damaged trees

• Debris-flow entrainment and routing

• Snow avalanches



Wood Inputs

Increase complexity:
• Topographic variation (pool scour, bar deposition)

• Flow variation (depth, velocity, area)

• Grain size variation (hydraulic sorting into patches)

• Hyporheic exchange



Outline

Effects of fire on channel morphology and aquatic 

habitat

• In headwater rivers that experience debris flows 

(steep confined rivers)

• In headwater rivers buffered from debris flows 

(moderate-gradient unconfined valleys)

• In mainstem rivers that receive debris-flow slugs 

(major tributary confluences)



Headwater rivers in the debris-flow zone

• How do fires and debris flows affect

• Channel morphology 

• Stream temperature



Methods

• Channel width & reach type

• Treatments: 

• Recent post-fire debris flow (< 1 yr.)

• Older post-fire debris flow (10 yr.)

• Undisturbed (over historical record)

• Space for time



channel width

debris-flow width
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Headwater rivers in the debris-flow zone

• Channel geometry

• Stream temperature

• How do fires and debris flows affect streamside 

vegetation, shading, and water temperature over short 

time scales (1-50 years)?

• How quickly does vegetation and stream temperature 

recover following channel disturbance?



Disturbance type & hypothesized vegetation 

(degree of stream shading)

No Recent Disturbance

Fire Only

Debris Flow Only

Fire & Debris Flow

(1 & 40 yr)

(<1, 1 & 10 yr) (<1, 1 & 7 yr)



Undisturbed Debris-flow only

Fire & debris flowFire only



Study design & measurements

• 4 treatments (undisturbed, debris-flow only, fire only, fire & 
debris flow)

• 32 streams in the Boise National Forest, southern Idaho Batholith

• Water temperature recorded during summer months

• Sampled vegetation every 20 m over reach lengths of 300-500 m:

– Took hemispherical photos to estimate solar radiation

– Counted woody stems within 1 m of channel

• Space for time substitution



Shaded Site

June 23rd Shading Data
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Headwater rivers buffered from debris flows

• How does fire affect channel morphology & aquatic 

habitat over longer time scales (10’s-100’s of years) in 

channels decoupled from direct debris-flow inputs?
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Study design

• 3 treatments (15-20, 90-130, > 150 years since fire)

• 19 streams in the Idaho Batholith

• Controlled for elevation, drainage area, valley slope, geology, land 

use

• Moderate slope (2-4%), unconfined floodplain channels

• Decoupled from direct hillslope inputs and debris-flow passage

• Focus on post-fire changes in basin hydrology, sediment 

supply, and proximal riparian characteristics

• Space for time

• Fish-bearing



Measurements

• Channel morphology (channel geometry, pool 

characteristics, grain size)

• Riparian canopy (tree density, basal area per unit area)

• Large woody debris (amount, location, function, size)



Results

• None of the 14 morphologic characteristics varied between 

treatments (a = 0.10)

• 2 out of 27 wood characteristics varied: number of pieces 

above bankfull, number of non-functional pieces (a = 

0.10)…largely the same pieces of wood in both cases

• Differences in wood characteristics had little effect on 

channel morphology & associated aquatic habitat



Conclusion

• The lack of morphologic variability between age classes of 

channels implies that wildfire disturbance does not have a 

long-term effect on channels of this stream type, 

suggesting that moderate-gradient, unconfined channels 

act as relatively stable, potentially productive, refugia for 

aquatic organisms.



Mainstem rivers receiving post-fire debris-

flow slugs

• How do sediment pulses affect channel 

morphology and aquatic habitat?



Debris Fans Locally Alter:

(Benda et al. 2003)

Channel Slope

Channel Width & Complexity

Hydraulics & channel units

Sediment Transport

[Benda et al. 

2003]



• But debris flows cause 

distal effects as the 

sediment wave propagates 

downstream



Field and numerical studies

Study area (spatial extent of the simulation is

highlighted in blue).• 3 post-fire debris flows in 

neighboring basins

• Repeat topographic surveys of 

debris fans and mainstem river

• Numerical model of fan 

evolution and network sediment 

routing (Cui, 2005)



Predicted Longitudinal Profile, Middle Fork Boise River 

Near Atlanta  

Pre-Disturbance

2003 pulses

2004

2005

2006

2008

2013

1 km

20m

0

Bed profile predicted to recover to pre-disturbance conditions within 10 years in this steep (1.4%),

confined river.
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Dynamic (transient) responses
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(no gravel 1979-2005) 



Take-home messages

• Location matters
• Risk & type of post-fire disturbance depends 

on location in the channel network & 

associated process domain.

• Pros & cons to fire
• Fires cause damage, but they also have 

important ecological benefits; aquatic 

organisms have evolved with these landscape 

disturbances and show adaptation to them.


