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EXECUTIVE SUMMARY 

 

 

 From 2002 through 2006 we investigated historical and contemporary variations 

in juvenile Chinook salmon Oncorhynchus tshawytscha life histories, habitat 

associations, and food webs in the lower Columbia River estuary (mouth to rkm 101).  At 

near-shore beach-seining sites in the estuary, Chinook salmon occurred during all months 

of the year, increasing in abundance from January through late spring or early summer 

and declining rapidly after July.  Recently emerged fry dispersed throughout the estuary 

in early spring, and fry migrants were abundant in the estuary until April or May each 

year.  Each spring, mean salmon size increased from the tidal freshwater zone to the 

estuary mouth; this trend may reflect estuarine growth and continued entry of smaller 

individuals from upriver.   

 

 Most juvenile Chinook salmon in the mainstem estuary fed actively on adult 

insects and epibenthic amphipods Americorophium spp.  Estimated growth rates of 

juvenile Chinook salmon derived from otolith analysis averaged 0.5 mm
 
d

-1
, comparable 

to rates reported for juvenile salmon Oncorhynchus spp. in other Northwest estuaries.  

Estuarine salmon collections were composed of representatives from a diversity of 

evolutionarily significant units (ESUs) from the lower and upper Columbia Basin.  

Genetic stock groups in the estuary exhibited distinct seasonal and temporal abundance 

patterns, including a consistent peak in the Spring Creek Fall Chinook group in May, 

followed by a peak in the Western Cascades Fall Chinook group in July.  The structure of 

acanthocephalan parasite assemblages in juvenile Chinook salmon from the tidal 

freshwater zone exhibited a consistent transition in June.  This may have reflected 

changes in stock composition and associated habitat use and feeding histories. 

 

 From March through July, subyearling Chinook salmon were among the most 

abundant species in all wetland habitat types (emergent, forested, and scrub/shrub) 

surveyed in the lower 100 km of the estuary.  Salmon densities within wetland habitats 

fell to low levels by July, similar to the pattern observed at mainstem beach-seining sites 

and coincident with high water temperatures that approached or exceeded 19°C by 

mid-summer.  Wetland habitats were used primarily by small subyearling Chinook 

salmon, with the smallest size ranges (i.e., rarely exceeding 70 mm by the end of the 

wetland rearing season) at scrub/shrub forested sites above rkm 50.  Wetland sites of all 

types were utilized by a diversity of genetic stock groups, including less abundant groups 

such as Interior Summer/Fall Chinook.   

 

 Juvenile salmon fed actively within wetland channel habitats.  Salmon 

consumption rates in the Russian Island emergent wetland ranged from 11.3% body 
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weight in 2005 to 19.3% body weight in 2006.  Estimated specific growth rates of salmon 

derived from recaptures of marked fish in the emergent wetland channel averaged 

0.67 mm d
-1

, similar to the otolith-derived estimates for individuals in the mainstem 

estuary.  Studies of prey availability and salmon diets indicated that tidal wetlands are a 

major source of prey for juvenile Chinook salmon both within and outside wetland 

habitats.  Insects produced in wetlands and other shallow habitats were utilized by salmon 

throughout the estuary, including larger size classes of fish that do not typically reside in 

wetland channels.   

 

 Analysis of historical habitat distributions in a Geographical Information System 

indicated that scrub/shrub and forested wetland types have declined in the estuary since 

the late 19th and early 20th centuries by 55 and 58%, respectively.  Diking, filling, and 

other changes have reduced the total area of all wetland types combined from 

approximately 155 to 75 km
2
.  Estimated loss of wetland habitat has been particularly 

high in the upper portion of the study area above Cathlamet Bay.  Results of simulation 

modeling suggest that a combination of diking and flow regulation has fundamentally 

altered the dynamics of river/floodplain interactions in the tidal freshwater region above 

Cathlamet Bay, eliminating the opportunity for salmon to access the extensive tidal 

floodplain area.   

 

 Wetland losses have not only reduced the availability of shallow peripheral 

rearing habitats, but also have eliminated an important carbon source for salmonid food 

webs.  Stable isotope analyses indicated that contemporary salmon select 

disproportionately for food webs linked to vascular plants and benthic diatoms, most 

likely through their consumption of prey resources produced in wetlands and other 

shallow-water habitats.  These results suggest that reduced sources of macrodetritus from 

removal of tidal wetlands could undermine the estuary’s capacity to support juvenile 

salmon.  Increased water temperatures in the tidal freshwater region of the estuary since 

1950 (from climatic changes and heating of mainstem reservoirs) have increased 

bioenergetic demands on salmon and may further constrain estuarine rearing 

opportunities, particularly during summer and fall months.   

 

 Together, changes throughout the basin (e.g., hatchery programs, population 

losses, flow regulation) and in the estuary (e.g. wetland habitat losses, increased water 

temperatures) may have decreased the proportion of Chinook salmon using the estuary 

during summer and fall months compared with the patterns observed during the first 

salmon life history study in 1916.  These results support the hypothesis that life history 

diversity of Columbia River salmon has diminished since early in the 20th century and 

could limit the resilience of salmon populations to future environmental change.  Of  
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particular concern are predicted regional effects of global warming that could place 

additional constraints on estuarine rearing opportunities, particularly in summer and fall.   

 

 Despite substantial estuarine habitat loss and evidence of reduced diversity of 

juvenile life histories, results from otolith, mark-recapture, and stable isotope studies 

confirmed that Chinook salmon throughout the Columbia River Basin rear in the estuary.  

With the likely exception of spring-run fish from interior basin ESUs, which may rarely 

occupy shallow estuarine habitats, Chinook salmon from all Columbia River ESUs with 

subyearling life histories reside in the estuary for extended periods, utilize a diversity of 

alternative habitat pathways, and interact with wetland food webs for periods of weeks to 

months.  Extensive use of estuarine habitats by Chinook salmon suggests that actions 

above Bonneville Dam alone cannot satisfy salmon recovery goals and that populations 

throughout the basin would benefit from estuarine habitat restoration.   

 

 Recovery of Columbia River salmon will require that sufficient habitat 

opportunity is provided in the estuary to accommodate the full complement of stocks and 

life history types in the basin.  Accordingly, a primary objective of salmon management 

and habitat restoration in the estuary should be to increase the diversity, extent, and 

spatial distribution of habitats capable of supporting multiple salmon ESUs and life 

history types.  Among the principal concerns for salmon recovery programs in the estuary 

are  

 

1) losses of peripheral wetland and tidal floodplain habitats;  

2) effects of hatchery programs and hydropower and transportation operations on 

estuarine patterns of salmon abundance, migration, residency, and habitat use;  

3) the risk of increasing water temperatures on summer and fall rearing opportunities 

for juvenile salmon.   

 

 In lieu of the present ad hoc approach to habitat restoration, estuary-wide strategic 

planning is needed to direct limited recovery resources toward those geographic areas, 

habitats, and activities that will most benefit multiple salmon ESUs.  Recovery efforts 

should encompass the entire habitat continuum, not just sites in the lower estuary, where 

most research and restoration activities have been focused.  Additional research is needed 

in the tidal freshwater region of the estuary above rkm 101 to understand habitat-use 

patterns across the entire estuarine tidal gradient for all genetic stock groups.  At the same 

time, a few indicator sites should be established in the lower estuary to monitor the status 

and trends of juvenile migrants (e.g., life histories, abundance, size composition, genetic 

structure) and to provide indices of basin-wide salmonid response to the Columbia River 

Basin Fish and Wildlife Program.    
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INTRODUCTION 

 

 

 In response to a 1998 estuarine research initiative of the Northwest Power 

Planning Council, a research team organized by NOAA Fisheries Service reviewed the 

current status of knowledge about the estuary’s role in the life history and ecology of 

Columbia River salmon Oncorhynchus spp.  The resulting report, Salmon at River’s End: 

The Role of the Estuary in the Decline and Recovery of Columbia River Salmon, or 

SARE (Bottom et al. 2005), concluded that changes in the historical habitat of the estuary 

had reduced estuarine rearing opportunities for subyearling Chinook salmon O. 

tshawytscha.  These changes included widespread removal of wetland and shallow-water 

habitat and the effects of flow regulation at mainstem dams.  The authors hypothesized 

that these modifications, together with other disturbances in the basin, had reduced the 

diversity of salmon life histories, which could undermine population resilience to 

changing environmental conditions (Healey 1991; Thorpe 1994).   

 

 Other evidence suggested that estuarine habitat loss and the creation of storage 

reservoirs behind Columbia River dams also may have modified estuarine food webs to 

favor pelagic prey species, undermining the capacity of the estuary to support juvenile 

salmon (Bottom and Jones 1990; Sherwood et al. 1990).  Unfortunately, because 

estuarine habitat use by Columbia River salmon has not been monitored consistently or 

comprehensively, few data exist to interpret the effects of estuarine modifications on 

historical populations or to draw inferences about the responses of at-risk salmon stocks 

to estuary restoration.   

 

 Traditional salmon management and recovery programs in the Columbia River 

basin have focused almost entirely on non-tidal habitats.  Most estuarine surveys have 

been conducted for short periods and were often linked to local impact studies.  They 

targeted migration and survival of large, hatchery-released stocks and ignored the many 

shallow-water habitat types typically favored by smaller subyearling migrants (Bottom 

et al. 2005).  Moreover, until very recently, research tools were not available to identify 

the upriver sources of unmarked fish sampled in the estuary or to reconstruct 

population-specific patterns of estuarine migration, residency, or habitat use.   

 

 In 2002, we initiated a research program to address many of the data gaps 

identified in SARE (Bottom et al. 2005) where information was needed to support salmon 

recovery throughout the basin.  To this end, we focused particularly on acquiring 

information about the habitat requirements of subyearling salmon with estuarine life 

histories.  This report summarizes our results through 2006.  The goal of our research was 

to determine historical and contemporary variations in juvenile salmon life history, 

habitat opportunity, and performance, and to determine whether restorative actions in the 
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Columbia River estuary are needed to insure salmon recovery.  Our research primarily 

targeted Chinook salmon, which exhibits the greatest diversity in juvenile life history 

(Healey 1991; Wissmar and Simenstad 1998), and which is also considered the most 

estuarine-dependent of Pacific salmon species (Healey 1982).  Based on the results and 

remaining uncertainties of the SARE analysis (Bottom et al. 2005), we addressed the 

following questions:   

 

1. What are the spatial and temporal patterns of juvenile Chinook salmon abundance 

and life history in near-shore habitats along the estuarine tidal gradient, and are 

these correlated with physical variables?   

 

2. Do upriver populations of Chinook salmon exhibit distinct habitat-use patterns or 

food-web linkages along the estuarine tidal gradient?   

 

3. a.   Do Columbia River Chinook salmon rear in tidal wetlands?   

 b.   If so, to what extent does their wetland use (i.e., abundance, seasonality, and 

residency) and performance (i.e., foraging success, growth) vary among 

different wetland types along the estuarine tidal gradient?   

 c.   Are upriver source populations associated with distinct wetland habitats or 

habitat types? 

 

4. a.   Have changes in historical habitat opportunity diminished the capacity of the 

estuary to support juvenile salmon and the diverse life histories of upriver 

populations?   

 b.   Have these habitat changes altered food webs, with similar consequences to 

salmon? 

 c.   Do contemporary patterns of estuary use by salmon support the hypothesis that, 

in the last century, juvenile life history diversity of Chinook salmon has 

declined? 

 

 This report synthesizes the results of 5 years of estuarine research.  It summarizes 

progress to date toward answering each of the above questions and discusses the 

management and research implications for future salmon recovery.  Detailed methods, 

results, and analyses for the many research activities briefly highlighted in this overview 

will be published separately.  Additional descriptions of our research methods are 

available in Roegner et al. (2005).  A current list of student theses, agency reports, and 

peer-reviewed publications resulting from this research is provided in the Appendix.   
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APPROACH 

 

 

 We implemented two complementary studies to address the above questions.  In 

2002, with support of the U.S. Army Corps of Engineers (USACE), we initiated a 

coarse-scale survey of selected shallow, near-shore habitats in the lower estuary region 

(Figure 1; Roegner et al. 2005).  This project established a series of fixed stations to 

continuously measure physical variables (e.g., water depth, salinity, temperature, 

velocities, etc.) in the lower estuary (Baptista 2006).  In addition, beach-seining sites 

were established to track abundances, life histories, stomach contents, and genetic 

composition of salmon along the lower estuary tidal gradient (questions 1 and 2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Sampling locations for the tidal gradient (beach seining), wetland habitat, and 

phytoplankton/zooplankton (stable isotope) surveys in the Columbia River 

estuary, 2002-2006.   

 
CS Clatsop Spit PAB Point Adams Beach 

PE Point Elice SI Seal Island 

RuI Russian Island KI-Sh/F Karlson Island shrub/forested 

WeI Welch Island UCC Upper Clifton Channel 

LES Lower Elochoman Slough ETI East Tennasilahee Island 

WAL Wallace Island LI Lord Island   
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 At a much finer (habitat) resolution, we also monitored fish and prey assemblages 

and surveyed vegetative communities within characteristic emergent, scrub/shrub, and 

forested wetland types distributed from rkm 35 to 101 (question 3).  This research 

constituted the first systematic survey of juvenile salmon in Columbia River tidal 

wetlands, providing comparative data on salmon densities, performance, and upstream 

population sources among different wetland types.  At a single indicator site—an 

emergent wetland at Russian Island (Cathlamet Bay)—we monitored fish and prey 

assemblages annually and conducted additional studies to estimate habitat-specific 

residence times, growth, and consumption of juvenile Chinook salmon.  Sampling 

duration at the other wetland sites was limited to 2 or 3 years, allowing us to shift survey 

effort upriver to characterize a wider diversity of wetland types and geomorphic and 

hydrologic settings (Table 1).  Detailed descriptions of sampling methods and results for 

the USACE monitoring project during the first 3 years of study were reported by Roegner 

et al. (2005).   

 

 

 
Table 1.  Years sampled (x) at each estuarine wetland site.  Monthly samples were 

collected March-July or August during each survey year, including data on 
composition and abundance of fish (trap-net surveys), invertebrate prey 
resources (insect fallout trap and benthic core surveys), and salmon stomach 
contents.  A pair of channels was sampled for fish and invertebrates at each 
wetland site.  The two channels at Karlson Island are listed separately because 
wetland type and sampling duration differed at each location.  

 

 

        
Site Wetland type rkm 2002 2003 2004 2005 2006 

Russian Island emergent 35 x x x x x 

Seal Island emergent 37 x x    

Karlson Island scrub/shrub 42 x x x   

Karlson Island forested 42 x x    

Welch Island scrub/shrub 53   x x  

Wallace Island forested/scrub/shrub 77     x 

Lord Island forested/scrub/shrub 101     x 
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 With support from the Bonneville Power Administration, we initiated a 

complementary study in 2003 to evaluate the potential effects of historical habitat change 

on estuarine food webs and their implications for juvenile salmon (question 4b).
1 

  The 

BPA study analyzed stable isotopes of δ13C, δ15N, and δ34S to identify organic sources 

supporting subyearling Chinook salmon in the estuary and to reconstruct the migratory 

and habitat pathways of individuals with different juvenile life histories.  The study 

identified isotopic signatures for major plant and prey resources in the estuary and 

compared these results with the signatures incorporated in salmon tissues.  This was the 

first empirical study in the Columbia River estuary to examine directly the hypothesis 

that habitat changes since the predevelopment period have adversely affected salmonid 

food webs.  The BPA study also allowed us to examine patterns of estuarine migration 

and habitat use by individual salmon based on the isotopic signatures of muscle and liver 

tissues, variations in salmon macroparasite communities, and otolith-derived estimates of 

salmon residence times in the lower estuary (question 2).  Methods and results of the 

stable isotope and otolith analyses are detailed by Anderson (2006).   

  

 Together the USACE and BPA studies provided data needed to interpret historical 

changes in estuarine habitat opportunities (question 4a).  We reconstructed historical and 

contemporary habitat composition and distribution in the lower estuary in a Geographical 

Information System and quantified changes since the first topographic (T-sheet) and 

bathymetric (H-sheet) surveys of the Columbia River estuary were completed during the 

late 19th and early 20th centuries (U.S. Coast and Geodetic Survey 1868 to 1901).  These 

results refined and updated an earlier habitat-change analysis by Thomas (1983) and 

established analytical protocols for extending the analysis to the entire estuary (to 

Bonneville Dam).    

 

 In addition, we developed a 3-dimensional circulation model of the estuary to 

study the dynamics of salmon habitat opportunity under varying river flow and 

bathymetric conditions and to compare the system response to alternative habitat- and 

flow-management scenarios.  Real-time estuarine circulation data collected in the lower 

estuary for the USACE monitoring project provided the information to develop and 

validate the 3-dimensional CORIE modeling system (Baptista 2006) used in the BPA 

study.  The T-sheet and H-sheet data described above also improved the bathymetric 

baseline needed to support simulations of historical habitat conditions.  The modeling 

system relies on two new circulation models (ELCIRC and SELFE) that substantially 

improve the reliability of habitat-opportunity simulations compared with the previous 

results of a 2-dimensional model reported in SARE (Bottom et al. 2005).  Details of the 

ELCIRC model are provided by Zhang et al. (2004) and Baptista et al. (2005), and details 

of the SELFE model are reported in Zhang and Baptista (2008).   

                                                 
1 BPA project 20031000n:  Historic habitat opportunities and food-web linkages of juvenile salmon in the 

Columbia River estuary and their implications for managing river flows and restoring estuarine habitat. 
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RESULTS 

 

 

Patterns of Abundance and Life History in Near-Shore Habitats 

 

Abundance and Mean Size 

 

 From 2002 to 2006, we collected monthly beach-seining samples at the following 

seven sites in the Columbia River estuary:  two in the marine zone near the estuary mouth 

(rkm 9.9-12.1); two within the tidal mixing zone below Tongue Point (rkm 19.8–22.0); 

and three in the vicinity of Tenasillahe Island (rkm 79.2–83.6), within the tidal freshwater 

zone (Figure 1).  In 2006, we added four additional beach-seining sites to extend the 

tidal-gradient survey area upriver as far as rkm 101 and to provide supporting data for 

adjacent wetland surveys at Wallace and Lord Islands (described below).  

 

 In all years, we found Chinook salmon present in the estuary during all months of 

the year, whereas chum salmon occurred for a brief period in the spring (Figure 2).  

Seasonal patterns of Chinook salmon abundance were relatively consistent among years:  

abundance increased steadily from January, reached a peak in late spring and early 

summer, and declined rapidly after July.  Salmon catches generally exhibited a 

longitudinal gradient with the highest catch per unit effort at tidal freshwater stations and 

the lowest values near the estuary mouth.  Several factors may contribute to this pattern, 

including greater concentration of salmon (and increased sampling efficiencies) in the 

narrow freshwater sections of the estuary and cumulative losses from the estuary 

population through mortality and emigration.   

 

 In all years, mean sizes of juvenile Chinook salmon increased rapidly throughout 

the year at all estuary zones (Figure 3).  Recently emerged fry appeared at all sites 

simultaneously in early spring, a pattern similar to the basin-wide dispersal of emergent 

fry reported in other Northwest rivers and estuaries (Healey 1991; Bottom et al. 2005).  

Fry migrants (< 60 mm) remained abundant in the estuary from January through April or 

May.  By April, mean sizes of juvenile Chinook salmon increased along a spatial gradient 

from the tidal freshwater zone to the estuary mouth.  This pattern likely reflects the 

increased growth of individuals during residency and migration through the estuary, as  

well as a continued arrival of smaller fish from upriver.   
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Figure 2.  Smoothed curves of catch per unit effort for Chinook and chum salmon at 

beach-seining stations in the Columbia River estuary, 2002-2006.  Stations 

grouped by habitat type are keyed as follows:  marine, ― CS (Clatsop Spit),  

– – – WSI (West Sand Island); estuarine mixing, ― PAB (Point Adams Beach) 

and – – – PE (Point Elice); and tidal freshwater, ― UCC (Upper Clifton 

Channel) and – – – LES (Lower Elochoman Slough) areas.  

 

 

 

 

 Mean sizes of salmon often decreased or leveled off after April, particularly at 

tidal freshwater sites, and could indicate an increased rate of influx by slightly smaller 

fish during spring and early summer.  For example, hatchery releases in 2003 and 2004 

peaked during June, and the average size at release leveled off in May and June 

(CRDART 1995), a pattern which could influence the size decrease observed among fish 

sampled in the estuary (Figure 3).  However, density-dependent interactions during the 

period of maximum salmon abundance also could have contributed to observed size 

trends in the estuary.  For example, year-to-year seasonal decreases in the mean growth 

rate of wild Chinook salmon in southern Oregon’s Sixes River estuary were attributed to 

food limitation as the population approached its mid-summer peak (Reimers 1973).  
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Figure 3.  Mean sizes and standard error for juvenile Chinook salmon at beach-seining 

sites in the marine (  ), estuarine mixing (  ), and tidal freshwater (  ) zones for 

each year (upper graph) and for all years combined (lower graph), 2002-2006.  
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Figure 4.  Mean surface water temperatures and Chinook salmon catch per unit effort at 

beach-seining sites in the marine (   ), estuarine mixing (   ), and tidal freshwater 

(  ) zones of the lower estuary, 2003-2006.  

 

 

 The rapid decline in Chinook salmon abundances each year after July generally 

coincided with high surface-water temperatures, particularly at sites located above the 

moderating effects of saline ocean water.  Although conditions varied annually, 

temperatures at beach-seining sites in the tidal freshwater and mixing zone sites typically 

exceeded 19 or 20°C by July and remained above this threshold through August or 

September (Figure 4).  These results suggest that estuarine rearing opportunities in 

shallow estuarine habitats may decline by mid summer, and fish may begin leaving the 

estuary or seeking deeper offshore habitats soon after salmon abundance has peaked and 

surface water temperatures have approached stressful levels.  Increased mortality after the 

mid-summer peak also could be a factor in the observed population pattern, but we have 

not measured natural mortality trends in the estuary.   
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Estuarine Residency 

 

 We analyzed otolith chemistry to reconstruct the juvenile life histories and 

estuarine residency of individual Chinook salmon (e.g., Zimmerman 2005).  Because the 

otolith technique measures an individual’s first encounter with salt water (based on 

elevated Sr levels in the otolith), it does not account for residency periods within the long 

tidal freshwater zone of the Columbia River estuary.  Nonetheless, many subyearling 

Chinook salmon remained for extended periods within the lower (salt-influenced) portion 

of the estuary.  In 2004 for example, 41% of the otolith samples analyzed from Point 

Adams Beach (in the estuarine mixing zone) showed evidence of saltwater rearing prior 

to capture.  Estuarine residency among these individuals averaged 73 d and ranged from 

10 to 219 d.  

 

 We estimate that nearly half (46%) of these individuals entered the estuary at a 

size less than 60 mm, and 11% entered as recently emerged fry (< 40 mm).  In contrast, 

previous estimates for Chinook salmon derived from marked hatchery groups yielded 

residency periods of about 1 week (Dawley et al. 1986).  These results may have 

underestimated residency because values were derived from the first estuary recaptures of 

large batches of similarly marked hatchery fish.  Previous estimates also may have been 

biased for individuals with short residence times, since large hatchery-fed fish may be 

least likely to rear in the estuary for additional periods before migrating to the ocean 

(Bottom et al. 2005).  Despite significant effects of contemporary hatchery programs on 

stock composition, time of estuarine arrival, abundance, and mean length of juvenile 

salmon (Dawley et al. 1986; Bottom et al. 2005), our otolith results confirm that a 

significant proportion of the subyearling Chinook salmon population still lingers in the 

estuary for weeks or months before migrating to sea.   
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Feeding and Growth 

 

 Measurements of stomach contents from samples collected at near-shore 

beach-seining sites in the lower estuary indicated that most juvenile Chinook salmon fed 

actively during their estuarine residency.  In 2002–2006, monthly mean stomach fullness 

values by volume varied between 70.2 and 100% (n = 1,554 stomachs).  Less than 1% 

(n = 15) of these stomachs were completely empty; only 1.8% (n = 28) of the stomachs 

were <10% full.  In contrast, a much greater proportion of empty Chinook salmon 

stomachs (as high as 12%) was reported during a 1980-1981 survey of lower estuary 

fishes (Bottom et al. 1984).   

 

 Adult insects and epibenthic amphipods Americorphium spp. were the most 

important prey items of subyearling salmon at all lower-estuary sites in 2002-2005 

(Figure 5).  Whereas A. salmonis was more prevalent in samples from the tidal freshwater 

zone, A. spinicorne dominated the stomach contents of individuals collected in the  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.  Major prey taxa consumed by juvenile Chinook salmon at seven beach-seining 

sites in the lower Columbia River estuary, 2002 to 2005. Prey taxa are ranked 

as a percent total of the Index of Relative Importance (IRI, Pinkas et al. 1971), 

which integrates frequency of occurrence, and percentage total biomass and 

numerical composition of each prey taxon. 
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estuarine mixing (Point Adams Beach and Point Elice) and marine (Clatsop Spit and 

West Sand Island) zones.  This feeding pattern was consistent with reports of a general 

decline in A. salmonis abundance toward the estuary mouth (Holton et al. 1984).   

 

 Studies during 1980-1981 similarly listed cladocerans (in the summer), 

Americorophium spp., and insects among the major prey taxa of subyearling Chinook 

salmon (e.g., Bottom et al. 1984; Bottom and Jones 1990).  In contrast, our 2002-2005 

survey more consistently ranked adult dipterans as the most important prey taxon at all 

lower estuary beach-seining sites.  A recent study estimated that semi-aquatic dipterans 

and other marsh insects are nearly twice as energy-rich (kJ g
-1

) as Americorophium spp. 

and other estuarine crustaceans (Gray 2005).   

 

 Growth rate estimates derived from daily growth increments on otoliths indicated 

that juvenile Chinook salmon directly benefit from foraging opportunities within the 

Columbia River estuary.  During their estuarine residency, Chinook salmon grew on 

average approximately 0.5 mm d
-1

 (range 0.06-1.06 mm d
-1

).  This rate was comparable 

to growth estimates reported for juvenile Chinook salmon in other Northwest estuaries 

(Healey 1991).   

 

Genetic Stock Groups 

 

 To determine whether the patterns of estuary use and performance vary among 

source populations, we used microsatellite DNA markers to estimate the stock origins of 

Chinook salmon collected in the estuary.  The analysis used 13 loci and standardized 

baseline data from 36 Columbia Basin populations (the GAPS database; Seeb et al. 

2007).  Estimates of proportional stock compositions in samples and the stock origins of 

individual fish were made using the software GMA (Kalinowski 2003).  In initial testing, 

we identified the following six genetic stock groups for estimating the origins of 

unknown individuals:   

 

Interior Spring 

Interior Summer/Fall 

Spring Creek Fall 

Upper Willamette Spring 

Western Cascade Fall 

Western Cascade Spring 

 

Of the 1,004 samples we analyzed from estuary beach seine collections in 2002-2004, 

approximately 90% were fall Chinook from the Lower Columbia River ESU (Spring 

Creek and Western Cascades Fall groups).  However, small proportions of spring run 
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Chinook from the Lower Columbia River (3%) and Upper Willamette River (1%) ESUs 

and summer- and fall-run fish from the interior Columbia Basin (6%) also were sampled.  

Although spring-run fish from the interior basin also were estimated to comprise a very 

small proportion of the catches (<1%), no individuals were assigned to that stock group 

with high probability.  Nonetheless these results indicate that salmon collections 

throughout the estuary were composed of fish from a diversity of ESUs (Figure 6).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.  Estimated proportions of 6 major Chinook salmon stock groups from seven 

beach-seining sites in the lower Columbia River estuary, 2002-2004 

(n = 1,004). 

 

 

 While multiple ESUs were represented during all months, stock groups exhibited 

distinct spatial and temporal abundance patterns in 2002-2004 (Figure 7).  The Spring 

Creek Falls group peaked in the estuary in May and declined thereafter.  Western 

Cascade Falls migrants were present throughout the year but reached their greatest 

abundance in July after the Spring Creek Falls group had declined.  This general temporal 

sequence—a peak in Spring Creek Falls abundance followed by a peak in Western 

Cascade Falls—was consistent among years.  Among minor stock groups, the Interior 

Summer/Fall run group gradually increased and decreased on either side of a July peak, 

while the few Upper Willamette Springs fish occurred between January and July only.   

 

 

 

 

 

Genetic Stock Assignments 

55% 36% 

6% 2% 

Western Cascades Fall 

Spring Creek group Fall 

Interior Summer/Fall 

Western Cascades Spring 

Upper Willamette Spring 

Interior Spring 
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Figure 7.  Genetic assignments for juvenile Chinook salmon sampled with the beach 

seine for all sites and years combined in 2002-2004 (n = 1,004).  Lower panel 

depicts minor stock groups only.  
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Parasites, Organic Matter Sources, and Habitat-Use Patterns 

 

 We examined the macroparasite communities of 828 Chinook salmon sampled 

with the beach seine in 2002-2004 as a potential indicator of salmon habitat use and life 

history patterns in the estuary.  A total of 457 salmon or 55% of all samples were infected 

with at least one parasite species.  Three different acanthocephalan species 

(Echinorhynchus sp., E. lageniformis, and Neoechinorhynchus sp.) and three nematode 

species (Hysterothylacium sp., an unidentified intestinal nematode, and Salvelinema sp.) 

were recovered from salmon intestines and swim bladders.   

 

 In all three years, samples collected at Lower Elochoman Slough showed 

evidence of a turnover in the parasite community in June, particularly among 

acanthocephalan species, which could represent a shift in the stock composition and 

associated habitat-use and feeding histories among individuals at the site.  In 2003, for 

example, prevalence of acanthocepahalans in juvenile Chinook salmon declined 

substantially during June and was absent for months thereafter (Figure 8B).   

 

 Since acanthocephalan life spans extend for approximately one year, the abrupt 

decline suggests that infected fish had left the area and were replaced by individuals with 

different parasite loads and food habits.  The parasite turnover each year at this site also 

coincided with the temporal shift in stock composition at Lower Elochoman Slough, as 

abundance of the Spring Creek Fall group declined substantially while the Western 

Cascade Falls and Interior Summer/Fall groups increased or maintained their abundance 

after June (Figures 7, 8A).   

 

 Stable isotope analyses of organic carbon sources for individual salmon sampled 

at Lower Elochoman Slough also indicated a temporal change in primary food sources 

during the summer (Figure 8C), including increased contributions from aquatic plant, 

benthic algae, and benthic diatom sources in June.  Interpretation of stock-specific 

patterns of estuarine habitat use will require further comparisons of the juvenile life 

history, organic matter sources, genetics, and parasites for individual fish.  For example, 

although lack of a temporal pattern in the salmon parasite assemblages at Point Adams 

Beach could be explained by increased mixing of stocks near the estuary mouth, the 

genetic stock groups at Point Adams Beach exhibited seasonal patterns similar to the 

trends recorded at Lower Elochoman Slough.   
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Figure 8.  Monthly genetic stock group assignments (A), intestinal parasite composition 

(B), and organic matter sources (C) for fish sampled at Lower Elochoman 

Slough in 2003.   
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 From stable isotope analyses of juvenile salmon tissues, we identified 13 types of 

estuarine rearing strategy as defined by food-web linkages (Table 3).  Common 

sequences of habitat use and movement included transitions from fluvial and benthic food 

webs to marsh food webs, and from marsh food webs to fluvial and marine food webs.  

The rarest life histories, in terms of membership of the population, were composed of 

individuals that showed no sign of hatchery rearing and relied heavily on marsh 

production in the estuary.  Most groups displayed diverse habitat associations, using 

freshwater wetland, fluvial, estuarine wetland, and marine food web resources.  

Interaction with marsh food webs was substantial for all subyearling Chinook salmon.  

The average time individual fish interacted with wetland-based food webs was estimated 

on the order of weeks to months throughout the estuarine habitat complex.  We found no 

indication that food web use was linked to stock of origin; however, sample sizes 

generally were too low for this type of comparison.   

 

 

 

Table 3.  Summary of cluster types, and the percent membership, average length (mm), 
location and month of capture, and associated mixing model results (muscle and 
liver tissues) for each cluster.  Muscle reflects long- term dietary sources on the 
order of weeks, whereas liver reflects short-term diet on the order of days.  The 
origin (if known), predominant signature of muscle and liver, and relative marsh 
residence times (high, medium, or low) for each cluster is also shown.   

 

 

 

         

Cluster 

Member- 

ship 

(%) 

Length 

(mm) Area Month Origin Muscle Liver 

Marsh 

Residency 

1 0.9 80 Lower Jul  Marsh Marsh High 

2 0.9 66 Mid May  Benthic Marsh High 

3 0.9 87 Upper Oct  Marsh Fluvial High 

4 1.9 99 Lower Jul Hatchery Hatchery Marine Low 

5 1.9 82 Lower Jul  Benthic Mixed Med 

6 1.9 85 Lower Jul Hatchery Marsh Fluvial & Marine High 

7 5.7 80 Mid May Hatchery Hatchery Mixed Low 

8 5.7 72 Upper-Mid Jun Hatchery Fluvial Fluvial Med 

9 5.7 77 Upper-Mid Jun Hatchery Fluvial Marsh High 

10 8.5 78 Upper-Mid Aug  Fluvial Marsh High 

11 18.9 71 Mid-Lower Jun Hatchery Hatchery Benthic Med 

12 22.6 77 Mid-Lower Jun Hatchery Hatchery Marine Low 

13 24.5 67 Upper-Mid May Hatchery Fluvial Marsh High 
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Salmon Habitat Use, Performance, and Source Populations  

within Wetland Habitats 

 

Salmon Densities and Size Classes 

 

 From March through July in 2002-2006, we surveyed a series of tidal wetlands to 

compare salmonid use and performance among characteristic wetland types.  Our results 

indicated that subyearling Chinook salmon rear in tidal wetlands of all types throughout 

the lower 100 km of the estuary (Figure 9).  Although other species, such as threespine 

stickleback Gasterosteus aculeatus, often dominated catches at particular sites, juvenile 

Chinook salmon nonetheless were among the top few species at each wetland site from  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.  Estimated densities of subyearling Chinook salmon within wetland study 

channels chosen at each island survey site.  Salmon abundances were adjusted 

by the average sampling efficiency for each fyke trap net (based on release and 

recapture of marked salmon above each site).  To compare abundances among 

sites, adjusted counts are expressed as densities based on GIS estimates of the 

total channel area sampled above each trap net.   
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March through July.  Seasonal peak densities of salmon ranged from <0.01 fish m
-2

 at 

Karlson (scrub/shrub and forested) and Seal Island south channels to 0.17 fish m
-2

 at 

Welch Island north channel.   

 

 Peak spring densities of juvenile salmon were particularly high at scrub/shrub and 

forested sites in the upper 50 km of our study area, including the tidal freshwater 

wetlands at Welch Island, Wallace Island, and Lord Island.  Most seasonal peak densities 

for Chinook salmon in the Columbia River wetlands are within the range of values 

(0.02-0.11 fish m
-2

) that has been reported for natural and restored marshes at Salmon 

River estuary on the central Oregon coast (Bottom et al. 2005; Cornwell et al. 2001).  

Salmon densities at all Columbia River sites fell to low levels by July, coincident with 

high water temperatures in shallow wetlands that approached or exceeded 19°C during 

summer.   

 

 Columbia River wetlands were used primarily by smaller size classes of Chinook 

salmon.  Many fry (~40 mm) entered wetland habitats soon after emergence in the spring. 

In contrast to the size ranges represented at lower estuary beach-seining sites (Figure 3), 

few individuals in any of the wetland channels exceeded 90 mm (Figure 10).  The size   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.  Monthly length frequencies (mm) of juvenile Chinook salmon collected in 

wetland channels at Russian Island (rkm 35) in 2002-06; Seal Island (rkm 37) 

in 2002-2003; Karlson Island forested and shrub sites (rkm 42) in 2002-2004, 

Welch Island (rkm 53) in 2004-2005, and Wallace and Lord Islands (rkm 77 

and 101) in 2006.   
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range was smallest for tidal freshwater wetlands above rkm 50 (i.e., Welch, Wallace, and 

Lord Islands), where salmon rarely exceeded 70 mm at the end of the rearing season.  

These results were consistent with the hypothesis that estuarine-resident salmon with 

subyearling life histories may depend on rearing opportunities in shallow, low-velocity 

wetlands (Bottom et al. 2005).   

 

Residency within Wetland Habitats 

 

 We studied the residency of juvenile salmon at two small study areas within a 

large distributary channel that bisects the Russian Island emergent wetland complex in 

Cathlamet Bay (Figure 1).  In 2006 we marked and released 918 juvenile Chinook 

salmon within two small sections of the channel, and recaptured a total of 224 (24%) 

individuals over the next five weeks (Figure 11).  Based on the cumulative recapture 

curve, we estimated median residency for individuals within the two study areas was 

approximately 5 d.  An additional 14% of the marked population remained for more than 

two weeks, and maximum recorded residency was 34 d. These represent minimum values 

since residence times may be substantially underestimated using conventional 

mark/recapture methods:  some individuals could have arrived at the site many days prior 

to initial marking, others may have remained somewhere within the expansive Russian  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11.  Days elapsed between release (n = 918) and cumulative recaptures (n = 224) 

of marked juvenile Chinook salmon in a Russian Island marsh channel in 

April 2006.  Median residency was estimated as approximately 5 d based on 

the time elapsed when 50% of all recaptures were tallied.   
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Island marsh complex beyond our limited recapture area, and others could have returned 

to the site long after the experiment was terminated.  In Oregon’s Salmon River estuary 

for example, a remote PIT detector recorded intermittent use of a small secondary 

channel by some individual Chinook salmon, including one fish that returned to the site 

109 d after its initial detection (Hering and Bottom 2006).  Thus, daily or less frequent 

sampling at a few locales may significantly underestimate the frequency and duration of 

habitat use by individual fish.  The Russian Island results demonstrated that, at a 

minimum, many Columbia River Chinook salmon returned to the same site for days or 

weeks despite having to vacate the channel twice daily at low tide.   

 

Prey Composition, Daily Ration, and Growth 

 

 Prey availability studies and salmon diet information indicated that tidal wetlands 

are a major source of food for juvenile Chinook salmon both within and outside wetland 

habitats.  Within the wetlands surveyed, the diets of subyearling salmon were dominated 

by chironomid insects, particularly emerging adults (Figure 12).  Chironomids also were    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12.  Major prey taxa consumed by juvenile Chinook salmon at each wetland type 

throughout each survey period, 2002-2006.  Prey taxa are ranked as a percent 

total of the Index of Relative Importance (IRI; Pinkas et al. 1971), which 

integrates frequency of occurrence, percent total biomass, and numerical 

composition of each prey taxon.  Sample size and range in fish fork length are 

listed for each site.   
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among the most abundant prey taxa available to salmon within each wetland type as 

indicated by samples collected in the insect fallout traps (Figure 13).   

 

 Other principal prey taxa for salmon included epibenthic amphipods 

(predominantly Americorophium spp.), and a variety of additional insect taxa; the ―other‖ 

category included other gammarid amphipods such as Eogammarus spp., mysids, and the 

cladocerans, Bosmina spp.  Diets of Chinook salmon from diverse wetland habitat types 

(Figure 12) and along the estuary tidal gradient (Figure 5) indicate that chironomids and 

other insects produced in emergent wetlands and possibly other shallow habitats benefit 

salmon throughout the estuary, including larger size classes that do not typically reside 

within wetland channels.  The estuary-wide influence of wetlands is further indicated by 

the many food webs based on marsh-derived plant sources with which juvenile salmon 

interact (Figure 9C).    

 

 We conducted two diel consumption studies (19-20 April 2005 and 

1-2 June 2006) to determine feeding patterns and estimate daily consumption rates for 

juvenile Chinook salmon within the Russian Island marsh.  In these studies, we sampled 

five Chinook salmon stomachs at approximately 3-h intervals during a 30-h period.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13.  Mean density and composition of insects and other invertebrates sampled per 

hour of insect fallout trap deployment at each wetland site in May  

2002-2006.  Sample size is listed for each sampling site.   
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Results indicated that subyearling Chinook salmon directly benefit from residency in 

wetland habitats.  We observed only one empty stomach among all fish analyzed during 

the two studies.  Mean daily ration estimates at Russian Island marsh ranged from 11.3% 

body weight for 50-69 mm salmon in 2005 to 19.3% for 53-99 mm salmon in 2006.  

Consumption of emergent marsh-produced prey, in turn, supported growth by juvenile 

Chinook salmon.  From recaptures of marked individuals during the 2006 residency 

study, we estimated that the average specific growth rate for Chinook salmon within the 

Russian Island wetland was 0.67 mm d
-1

 (SD = 0.46; R = -0.83 – 2.1 mm d
-1

).  This result 

was very similar to independent estimates (0.5 mm d
-1

) described above (section 2, 

Feeding and Growth) from otolith increment analysis of salmon collected in the estuarine 

mixing zone (Point Adams Beach).  

 

Genetic Stock Groups 

 

 Wetland sites of all types directly supported a diversity of genetic stock groups.  

All groups identified at estuary beach-seining sites (Figure 6) also were represented in 

wetland channel habitats except for the Upper Willamette River Spring group 

(Figure 14).  Most salmon vacated wetland channels by July or August.  The Spring 

Creek Fall group declined through the spring and summer, similar to the trend observed 

at mainstem beach-seining sites (Figure 8A).  Results to date suggest that wetland use 

among genetic stock groups may vary along the estuarine tidal gradient, including a 

somewhat smaller contribution by the Spring Creek Fall group at upper (i.e., Lord and 

Wallace Islands) relative to lower wetland (i.e., Karlson, Russian and Seal Islands) sites.  

Verification of spatial patterns of wetland habitat use among genetic stock groups will 

require additional sampling along the entire estuarine tidal gradient (to Bonneville Dam).   
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Figure 14.  Juvenile Chinook salmon stock composition at Karlson, Russian, and Seal 

Island wetlands in 2003 and at Wallace and Lord Island wetlands in 2006.  

Abbreviations:  WC-Western Cascades; SCG-Spring Creek Group; 

Su-summer; F-fall; Sp-spring.   

 

 

0 %

2 0 %

4 0 %

6 0 %

8 0 %

1 0 0 %

M a rc h A p r il M a y J une J u ly A ug us t O c to b e r

W a lla c e  Is la n d  2 0 0 6

2 7 1 7 3 0 1 2 1 1

0 %

2 0 %

4 0 %

6 0 %

8 0 %

1 0 0 %

M a rc h A p r il M a y J une J u ly A ug us t O c to b e r

W a lla c e  Is la n d  2 0 0 6

2 7 1 7 3 0 1 2 1 1

0 %

2 0 %

4 0 %

6 0 %

8 0 %

1 0 0 %

M a rc h A p r il M a y J une J uly A ug us t O c to b e r

L o rd  Is la n d  2 0 0 6

2 7 2 0 2 51 9 1 1 1 6

0 %

2 0 %

4 0 %

6 0 %

8 0 %

1 0 0 %

M a rc h A p r il M a y J une J uly A ug us t O c to b e r

L o rd  Is la n d  2 0 0 6

2 7 2 0 2 51 9 1 1 1 6

K a r ls o n , R u s s ia n , a n d  S e a l Is la n d  2 0 0 3

0 %

2 0 %

4 0 %

6 0 %

8 0 %

1 0 0 %

J a n -  

M a rc h

A pr il M a y J une J u ly  -

A ugus t

2 7              7 9              1 0 1             4 0             1 9

0 %

2 0 %

4 0 %

6 0 %

8 0 %

1 0 0 %

J a n -  

M a rc h

A pr il M a y J une J u ly  -

A ugus t

2 7              7 9              1 0 1             4 0             1 9

In te r io r  S u m m e r/F a ll

W e s te rn  C a s c a d e s  F a ll

W e s te rn  C a s c a d e s  S p r in g

S p r in g  C re e k  F a ll

In te r io r  S u m m e r/F a ll

W e s te rn  C a s c a d e s  F a ll

W e s te rn  C a s c a d e s  S p r in g

S p r in g  C re e k  F a ll

In te r io r  S u m m e r/F a ll

W e s te rn  C a s c a d e s  F a ll

W e s te rn  C a s c a d e s  S p r in g

S p r in g  C re e k  F a ll



 25 

22 

30 

26 

9 

14 

28 

25 

23 

10 

13 

0 

5 

10 

15 

20 

25 

30 

35 

Deep water 
(greater than 18 ft) 

 

Medium-depth water 
(18 to 6 ft) 

Flats and shallows 
(6 ft to MLLW) 

Tidal marsh Tidal swamp 

T
o

ta
l 

a
re

a
 (

%
) 

Thomas (1983) and Graves et al. (1995) 
 T & H-sheets 

September 2007 

Historical Changes in Salmon Habitat Opportunity,  

Food Webs, and Life Histories 

 

Habitat Distribution 

 

 We digitized late 19th and early 20th century topographic (T-sheets) and 

hydrographic (H-sheets) survey data (U.S. Coast and Geodetic Survey maps dated 1868 

to 1901) and classified historical habitat distributions in the lower Columbia River 

estuary (rkm 0–75) in a Geographical Information System (GIS).  The higher-resolution 

T-sheets and H-sheets and our digital methodology improved the detail and accuracy of 

historical land cover and bathymetric habitat classes for the lower estuary compared with 

those originally reported by Thomas (1983) and Graves et al. (1995).  Digitized historical 

data indicated slightly higher proportions of deep-water and tidal marsh habitats and 

somewhat lower proportions of medium-depth water, flats, and shallows than were 

previously reported (Figure 15).   

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
Figure 15.  Lower estuary habitat areas derived from GIS analysis of historical T-sheets 

and H-sheets and those previously derived from nautical charts (Thomas 

1983; Graves et al. 1995).   



 26 

)

0

10

20

30

40

50

60

70

Tidal flats Submerged
marsh

Marsh Forested
wetland

T-sheets

Landsat TM 2001

A
re

a
 (

k
m

)2

Scrub-shrub 

wetland

)

0

10

20

30

40

50

60

70

Tidal flats Submerged
marsh

Marsh Forested
wetland

T-sheets

Landsat TM 2001

A
re

a
 (

k
m

)2

Scrub-shrub 

wetland

 Estimated habitat changes since the time of historical surveys remain preliminary 

because we lack recent bathymetric data for shallows, flats, and many distributary 

channels, and tidal elevations during the Landsat data collection are unknown.  

Nonetheless, estimates derived from available Landsat satellite imagery suggest that total 

surface area of all wetland types within the lower Columbia River estuary has declined 

substantially since the late 19th and early 20th centuries (Figure 16).  The largest 

estimated losses have occurred in scrub/shrub and forested wetland types, which have 

declined approximately 55 and 58%, respectively.  We estimate that the total area of all 

marsh types combined (i.e., excluding the area of tidal flats) has decreased from 

approximately 155 to 75 km
2
, a reduction of slightly more than 50%.   

 

 Loss of forested wetlands has been particularly high in the upper portion of the 

study area above Cathlamet Bay.  The total area of emergent (tidal marsh) wetland types 

has declined by a smaller percentage, in part because marsh area has increased locally 

among many island habitats in Cathlamet Bay.  Areas of shoaling in the vicinity of 

Cathlamet Bay also account for much of the increase in tidal flat area of the lower 

estuary.  GIS mapping of historical and contemporary wetlands indicated that much of 

the shoreline marsh vegetation and associated dendritic channel networks have been 

removed from the lower estuary by diking and filling, substantially reducing the 

availability of peripheral wetland habitat to juvenile salmon.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 16.  Estimated habitat areas and distributions derived from historical (T-sheets) 

and contemporary (Landsat TM 2001) surveys of the lower Columbia River 
estuary.   
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Habitat-Opportunity Dynamics 

 

 We used simulation modeling to examine the effects of bathymetric and 

hydrological change on salmon habitat opportunity, defined as the availability of 

shallow-water (10 cm to 2.0 m) habitats preferred by subyearling salmon (Bottom et al. 

2005).  The model contrasted habitat opportunity (h × m
2
 wetted area) in various regions 

of the lower estuary among the following management scenarios:   

 

1) Predevelopment (1880) bathymetry and flow  

2) Predevelopment bathymetry and flow with modern dikes introduced in the 

Brownsmead area (near rkm 50)  

3) Predevelopment flow with modern bathymetry  

4) Modern (2004) flow with predevelopment bathymetry  

5) Modern flow with modern bathymetry    

 

Simulation results suggest that flow regulation and bathymetric changes (i.e., diking and 

navigational development) have fundamentally altered the dynamics of river/floodplain 

interactions, eliminating considerable habitat opportunity in the uppermost tidal 

freshwater region of the lower estuary (Figure 17).    

 

 For example, in the predevelopment flow and bathymetry scenario, simulated 

habitat opportunity in this region showed a linear increase with river flow (Figure 17).  

On the other hand, habitat opportunity using modern bathymetry remained stable at 

relatively low levels throughout a wide range of flow conditions, reflecting the effects of 

peripheral dikes on floodplain areas.  These results reinforced the earlier findings of 

Kulkala and Jay (2003a,b) who demonstrated that diking throughout the Skamokawa 

(rkm 50) to Beaver (rkm 90) region prevents inundation of the historical floodplain for a 

wide range of river flows.   
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Figure 17.  Weekly habitat opportunity in the uppermost region of the lower Columbia 

River estuary plotted against river flow for various modern and 

predevelopment scenarios (see text description).  The modeling region is 

mapped in the upper right.  The lower right figure outlines the dikes that were 

superimposed on the predevelopment bathymetry. 

 

 

 Simulation results have important implications for habitat restoration in the tidal 

freshwater regions of the estuary.  For example, superimposing modern dikes in areas of 

Cathlamet Bay and Tennasillahe Island onto the predevelopment bathymetry reduced 

habitat opportunity for salmon (Figure 17; modern dikes in predev).  However, this 

particular change did not alter the underlying linear response to increasing river flows.  In 

contrast, the modern (regulated) flow regime has eliminated altogether the higher flow 

conditions that historically would have allowed salmonids to access much of the 

floodplain habitat (Figure 17; modern flow/predev bath).   

 

 These results illustrated the importance of hydrology to habitat function within 

this estuarine region, where the efficacy of dike removal or other habitat restoration 

projects also will depend on the underlying flow-management regime.  Ultimately, 

restoring habitat access to juvenile salmon in the extensive tidal freshwater reaches of the 

estuary will require re-establishing river/floodplain connections through some 

combination of flow and habitat restoration (e.g., dike removal, setbacks, etc.).  To better 

understand these effects, finer scale modeling will be needed to examine restoration 

alternatives for site-specific bathymetric and topographic conditions and selected flow-

management scenarios.   
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Estuarine Food Webs 

 

 Loss of wetland habitat and reduced interaction with the tidal floodplain have not 

only reduced rearing opportunities for juvenile salmon, but may have eliminated an 

important carbon source for salmonid food webs.  Sherwood et al. (1990) estimated that 

wetland losses eliminated approximately 15,800 metric tons of carbon per year or 84% of 

the macrodetritus that historically supported estuarine food webs.  At the same time, 

enhanced phytoplankton production, which occurs in the reservoirs behind mainstem 

dams, increased the amount of microdetritus delivered from upriver sources by 

approximately 31,000 t C year
-1

 (Sherwood et al. 1990).  Fluvial phytoplankton now 

accounts for approximately 58% of the carbon available in the estuary compared with 

only 37% available from vascular plants (Small et al. 1990).   

 

 Despite these significant changes in the carbon budget, stable isotope analyses 

indicated that salmonid food webs remain closely linked to vascular plant detritus and 

benthic diatoms (Figure 8c).  This link is most likely maintained through consumption of 

prey resources produced in wetlands and other shallow-water habitats (e.g., Figures 5 and 

12).  A comparison of carbon sources currently utilized with their estimated availability 

in the estuary indicates that contemporary salmon may select disproportionately for food 

webs linked to vascular plants and benthic diatoms (Figure 18).   Although not 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18.  Comparison from mixing model results of available organic matter from 

estimates of total production (mg C year
-1

) to the organic matter utilized by 

subyearling Chinook salmon.  Estimates of production are from Small et al. 

(1990) of 1980 conditions in the Columbia River estuary.   
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conclusive, these results reinforce the hypothesis that many juvenile salmon may not 

benefit directly from the enhanced phytoplankton production in mainstem reservoirs, and 

that the substantial reduction in macrodetrital sources through wetland loss could 

undermine estuarine capacity to support juvenile salmon (Bottom et al. 2005).   

 

Estuarine Water Temperature 

 

 An analysis of long-term temperature records at Bonneville Dam indicated that 

historical changes in river temperature could further constrain salmon habitat opportunity 

in the estuary during summer and fall months.  Incoming river water exerts a primary 

influence on water temperatures, and therefore on the availability of suitable rearing 

habitats, throughout the tidal freshwater portion of the estuary (i.e., above the cooling 

effects of incoming ocean water).  Since the 1940s, shifts in the Pacific Decadal 

Oscillation and changes in river management together have influenced long-term 

temperature trends at Bonneville Dam (Figure 19).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19.  Trends in mean monthly temperatures at Bonneville Dam, May through 

August.  Trends are shown for warm and cold phases of the Pacific Decadal 

Oscillation and for four river-management eras:  1) Pre-Hanford, 2) Hanford, 

3) Flow regulation, and 4) Temperature regulation.  
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 For example, during a cool phase of the PDO that began in the late 1940s, 

Bonneville temperatures remained relatively low, despite any warming effects from 

discharges by the Hanford nuclear reservation (management period 2).  On the other 

hand, temperatures increased in the late 1970s through 1990s as the shift to a warm PDO 

coincided with effects of reservoir heating and flow regulation from a fully developed 

hydroelectric system (management period 3).  Since approximately 1950, mean river 

temperatures at Bonneville have gradually increased and for the last several decades often 

have approached or exceeded 20°C by July or August, increasing the bioenergetic 

demand for juvenile salmon and perhaps limiting availability of suitable estuarine rearing 

habitat (see Figure 4).  The long-term trends raise concerns about future salmon rearing 

opportunities in the estuary.   

 

Chinook Salmon Life History 

 

 We analyzed recent beach-seining results to evaluate the hypothesis that life 

history diversity of juvenile Chinook salmon in the Columbia River estuary has declined 

relative to the patterns observed during Rich’s (1920) survey more than 90 years ago 

(Burke 2005; Bottom et al. 2005).  Our recent data (Figure 2 and 3) suggested that the 

influx of fry during spring and summer was somewhat greater than expected from the 

SARE results (Bottom et al. 2005).  Nevertheless, fry abundance in early spring still may 

be considerably less than Rich (1920) observed in 1916.  In contrast to the short estuarine 

residence times previously reported from an analysis of hatchery-release groups (Dawley 

et al. 1986; Bottom et al. 2005), our otolith and mark-recapture results (i.e., Figure 11) 

confirm that many contemporary Chinook salmon continue to express estuarine-resident 

life histories similar to those reported by Rich (1920; Bottom et al. 2005).   

 

 However, beach-seining surveys since 2002 indicated that proportionally fewer 

juvenile salmon now utilize the estuary throughout the late summer and fall.  Unlike the 

protracted and relatively even pattern of estuary occupation by salmon observed in 1916 

(Rich 1920; Figure 20), the population curve is now skewed toward the period March 

through July and peaks sharply in spring or early summer.  This trend is consistent with 

the hypothesis that salmon life history diversity in the lower estuary has been simplified 

(Burke 2005; Bottom et al. 2005).  According to Rich’s (1920) survey results, salmon 

present in the estuary during September-December 1916 consisted of a diversity of life 

history types, including recent migrants from upriver, as well as individuals that had 

spent a significant period rearing in the estuary (Burke 2005; Bottom et al. 2005).   
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Figure 20.  Three-month running average of estimated monthly proportions (percent total 

catch per unit effort) of juvenile Chinook salmon abundance in the lower 

estuary, 1916 and 2002-2006.  Estuary surveys in 1916 were conducted 

March-December only. 

 

 

 

 Assuming Rich’s (1920) survey data are representative of the predevelopment 

pattern of estuary use by juvenile salmon, changes in the abundance curve could reflect 

reduced habitat opportunities (e.g., Figure 4).  These changes could also indicate 

increased mortality in the estuary during summer and fall, upriver habitat loss, hatchery 

releases, or hydropower effects.  All or any combination of these factors may have 

contributed to a simplified population structure and altered life history in downstream 

migrants.  The predicted consequences of global warming for the Columbia River Basin 

(ISAB 2007), that is, reduced snow pack, reduced summer/fall flow, and increased water 

temperature, could further erode salmon life history diversity by placing additional 

constraints on estuarine rearing opportunities, particularly in the summer and fall.   
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CONCLUSIONS 

 

 

 Our investigations have reinforced many of the conclusions of SARE (Bottom 

et al. 2005) while offering new details about habitat associations needed to support 

salmon recovery efforts throughout the basin.  Results demonstrate that the estuary 

contributes directly to life history diversity in Chinook salmon by providing opportunities 

for all Columbia River ESUs to express a variety of subyearling migrant life histories.  

Small subyearling Chinook salmon seek shallow-water rearing habitats and occupy a 

diversity of emergent, shrub, and forested wetlands throughout the lower half of the 

estuary.  Many subyearling salmon interact with wetland-based food webs for weeks or 

months and grow substantially before entering the ocean.   

 

 Preliminary evidence suggests that shallow backwater areas and tributary 

junctions in the upper estuary similarly may afford important rearing habitats for upper 

and lower Columbia River stocks (e.g., Baker and Miranda 2006, 2007; LCREP 2007). 

However, comprehensive understanding of estuarine habitat use by all ESUs will require 

further investigation of representative reaches and habitat types between rkm 101 and 

Bonneville Dam.   

 

 Our results are consistent with the hypothesis that life history diversity of juvenile 

Chinook salmon has declined since early in the 20th century.  This decline may result 

from a combination of estuarine habitat loss, the effects of watershed modifications, and 

the effects of hatchery programs on downstream migrating salmon (Burke 2005; Bottom 

et al. 2005).  Our recent investigations suggest that a relatively small proportion of the 

juvenile Chinook salmon now use the estuary in late summer and fall compared with the 

pattern observed by Rich (1920) more than 90 years ago.  On the other hand, by sampling 

a variety of shallow-water habitats and analyzing life histories for a range of size classes, 

we documented that many juveniles rear in the estuary for longer periods than had been 

recently reported.   

 

 For example, one prior analysis of 16 marked hatchery groups estimated that 

juvenile Chinook salmon travel from Jones Beach to the river mouth in 6 d or less 

(Dawley et al. 1986).  In contrast, we estimated from otolith analyses that 41% of the fish 

sampled at one lower estuary beach-seining site (Point Adams Beach) had resided within 

the brackish portion of the lower estuary from 10 to 219 d prior to capture.  

 

 Our genetics results demonstrated that all Columbia River ESUs are capable of 

expressing estuarine-resident life histories.  To the extent that habitat opportunities in the 

estuary can be restored (and the upriver migration pathways that support 
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estuarine-resident behaviors are not impaired), we conclude that life-history diversity and 

resilience of Columbia River salmon populations will benefit.  This conclusion is 

supported by results of recent studies in Oregon’s Salmon River estuary, where extensive 

tidal wetland restoration has expanded the variety of estuarine-resident life histories.  

This expansion has increased the range of sizes and times of ocean entry among Salmon 

River juvenile migrants (Bottom et al. 2005) and contributed new survivors to the adult 

population (L. Campbell and E. Volk, unpub. data).   

 

 Our investigations also support the hypotheses that 1) reduced input of 

macrodetritus from wetland habitat loss in the estuary has undermined salmonid food 

webs, and 2) such losses are not compensated by enhanced delivery of phytoplankton and 

microdetritus to the estuary from upriver reservoirs (Sherwood et al. 1990; Small et al. 

1990; Bottom et al. 2005).  Juvenile salmon throughout the estuary fed on insect prey 

produced in wetlands and other shallow habitats, and energy flow to salmon was linked 

to wetland detritus.  Moreover, despite substantial declines in wetland detrital sources in 

the last century (Sherwood et al. 1990), contemporary salmonid food webs appear 

disproportionately linked to wetland-derived prey.   

 

 Loss of a large proportion of historical tidal wetlands and floodplains that 

provided physical habitat structure and supported macrodetrital food webs thus could 

limit the estuary’s capacity to support juvenile salmon.  To further evaluate salmonid 

food-web linkages in the estuary, we plan additional studies in Grays River, a lower 

Columbia River tributary where estuarine food webs are not directly influenced by 

mainstem dams and where considerable amounts of formerly diked wetland habitat has 

been restored to tidal inundation.   
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MANAGEMENT IMPLICATIONS 

 

 

Salmon Recovery and Estuary Restoration 

 

 Contrary to traditional assumptions that the Columbia River estuary is primarily a 

hazardous corridor through which salmon must migrate rapidly to avoid predation 

(Bottom et al. 2005), our research results indicated that the estuary is a productive 

nursery area for stocks throughout the basin.  With the likely exception of spring-run fish 

from interior basin ESUs, which may rarely use shallow estuarine habitats, Chinook 

salmon from all Columbia River ESUs with subyearling migrant life histories reside in 

the estuary for extended periods, feed, and grow rapidly before migrating seaward.  The 

importance of the estuary as a transitional environment and nursery ground is reinforced 

by previous experimental hatchery releases, which documented a higher return among 

groups of salmon with access to the estuary compared with those that were released 

directly into marine waters (Solazzi et al. 1991).  

 

 Use of the estuary as rearing habitat by stocks throughout the basin suggests that 

mitigation actions above Bonneville Dam alone will not be sufficient to meet salmon 

recovery goals.  Although extensively altered and degraded in some reaches, the estuary 

still contributes to population viability by providing a mosaic of alternative rearing 

opportunities for all Columbia River stocks.  Such opportunities expand in time and space 

the variety of life history strategies within each ESU that can potentially contribute to 

adult returns.  Traditional mitigation strategies designed to improve salmon survival in 

freshwater do not account for the habitat requirements of downstream migrants, and may 

have unintended adverse consequences in the estuary.  For example, hatchery programs 

constrict the stock composition, timing, and size distribution of salmon entering the 

estuary (Dawley et al. 1986), and flow regulation limits fish access to productive tidal 

floodplain habitats (Kukulka and Jay 2003a,b; Figure 17). 

 

 Changes upriver and in the estuary may account for the apparent simplification of 

juvenile life histories since the early 20th century (Rich 1920; Figure 20) and could 

further compromise salmon resilience to future natural or anthropogenic change.  

Effective salmon recovery strategies therefore, must simultaneously address watershed 

and estuarine effects on salmon life history diversity.  Among the principal changes that 

may undercut salmon performance in the estuary are:   

 

a) Widespread loss of peripheral estuarine wetlands and tidal floodplain habitats due to 

diking, filling, and flow regulation.  
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b) Concentration of salmon abundances and life histories through intensive hatchery 

production and through spill, bypass, and transportation operations that constrict 

downstream migration opportunities.    

c) Increased mainstem temperatures (from climatic changes and heating of mainstem 

reservoirs) that may reduce salmon rearing opportunities in the tidal freshwater 

zone.   

Integrated watershed-estuary recovery strategies thus are needed to account for the 

physical and biological interactions that now limit both habitat opportunities and juvenile 

life history expression within the estuary. 

 

 Our results imply that a primary objective of salmon management and habitat 

restoration in the estuary should be to increase the diversity, extent, and spatial 

distribution of habitats capable of supporting multiple salmon ESUs and life history 

types.  Subyearling and yearling migrants exhibit different rearing behaviors and select 

different habitats within the estuary.  Subyearling migrants utilize the entire diversity of 

shallow-water, wetland ecosystems that we have investigated to date (rkm 35-101), and 

on average, individuals interact with wetland-based food webs throughout the estuary for 

periods of weeks to months.  

 

 Recovery efforts should encompass the entire habitat continuum, not just sites in 

the lower estuary, where most research and restoration activities have been focused. 

Although stable isotope analysis could discern no obvious differences in habitat and 

food-web pathways among ESUs, the genetic data provided evidence that broad temporal 

and spatial patterns of habitat use across the entire estuarine tidal gradient (to Bonneville 

Dam) may vary among stock groups.  For example, recent genetic data suggest that a 

large proportion of Interior Summer/Fall Chinook salmon stocks utilize the upper estuary 

(LCREP 2007).  At the same time, these stocks were found in deltaic wetlands within the 

Willamette River channel (LCREP 2007) and in lower-estuary wetlands in Cathlamet 

Bay (Figure 14).  To maintain viable Columbia River populations, a comprehensive 

restoration strategy should encompass habitat opportunities for the full range of salmon 

life history types and ESUs, including suitable rearing habitats to support salmon 

migrations through the estuarine tidal gradient. 

 

 Today, restoration projects in the Columbia River estuary are chosen primarily 

through an ad hoc and site-by-site selection process based on land availability and the 

willingness of landowners to participate.  A more strategic approach is needed to direct 

limited recovery resources toward those geographic areas, habitats, and activities that will 

most benefit multiple salmon ESUs along the estuarine continuum.  Collectively, 

individual actions should restore connectivity of the estuarine habitat mosaic for juvenile 

salmon.  Furthermore, rather than simply creating or rehabilitating habitat structure, 

restoration should re-establish ecological processes that rebuild and maintain the habitat 

mosaic.   
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 To support these goals, historical and contemporary data suggest that a high 

priority should be given to emergent and scrub/shrub forested wetlands and shallow 

backwater areas along peripheral shorelines, particularly in the oligohaline and tidal 

freshwater reaches of the estuary.  Dike removal and setbacks are more likely to 

re-establish functional habitat-forming processes than tidegate replacements or artificial 

habitat creation projects, provided flow conditions are sufficient to inundate target areas 

and allow access by juvenile salmon.  Fine-scale modeling may be needed to evaluate the 

restorative potential of various actions within specific upper-estuary locations, which are 

now strongly impacted by the hydrosystem managed flow regime. 

 

 A comprehensive plan is needed to define the goals of estuary-wide restoration 

and to analyze the potential costs and benefits of alternative strategies for achieving these 

goals.  The present ad hoc approach to estuary restoration—planned and applied entirely 

at the local scale and focused narrowly on total numbers and acres of projects—does not 

account for the geographic placement, landscape structure, or connectivity of habitats that 

are necessary to support the varied migration and rearing behaviors of diverse Columbia 

River stocks.  Our analysis of historical habitat distributions; improved modeling of 

habitat-opportunity dynamics; and a recent classification of estuarine reaches, habitat 

types, and complexes (see Leary et al. 2007) provide useful tools and guidance to begin 

evaluating landscape-scale restoration alternatives throughout the estuary.   

 

 

Estuarine Research Needs 

 

 Additional research is needed to fully document the historical and contemporary 

diversity of juvenile salmon habitat types, habitat functions, and life histories in the 

Columbia River estuary.  Since 2002 we have documented widespread use of the lower 

estuary and portions of the mid-estuary, including diverse wetland types and selected 

shallow beach-seining sites from the mouth to Lord Island (rkm 101).  However, salmon-

habitat associations in the upper estuary rarely have been investigated.  The uppermost 

forested/scrub/shrub wetlands that we surveyed at Wallace and Lord Islands were among 

the most heavily used by juvenile salmon and supported juveniles with a smaller size 

range than that of the lower estuary wetlands.   

 

 Other recent studies of upper estuary wetlands were conducted further upstream 

in the lower Willamette and East Fork Lewis Rivers (Baker and Miranda 2006, 2007).  

Their results indicate that the timing of occupation and species composition of these tidal 

floodplain wetlands may differ from the typical March through July pattern we observed 

for Chinook salmon in lower mainstem emergent marshes.  For example, most juvenile 

Chinook and coho salmon entered these wetlands from late fall through March, often 

timed with high-water events, and most left during spring runoff in April and May.   
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These findings raise additional questions about salmon-habitat associations and 

requirements between rkm 101 and Bonneville Dam, including the following:   

 
1. Do tidal freshwater wetlands and shallow backwater areas of the upper estuary 

function similarly to those in the lower and mid-estuary? 

2. How do marked differences in tidal range and water level fluctuation (including 
effects of flow regulation) affect habitat access, habitat utilization, and performance 
of juvenile salmon in the upper estuary? 

3. Do peripheral and deltaic wetlands at tributary junctions function similarly or 
differently from the island/wetland complexes investigated to date in the lower 
mainstem estuary? 

4. Are the deltaic habitats of tributary streams in different reaches of the estuary used 
widely by salmon from remote ESUs or primarily by local populations? 

5. Does flow regulation limit options for restoring wetland habitat opportunity or 
functionality in the upper estuary? 

 

 Although our results describe somewhat different temporal patterns of estuarine 

migration among ESUs, the spatial distribution of diverse genetic stock groups has not 

been fully resolved.  Preliminary genetic data for a few upper estuary sites (Leary et al. 

2007) imply that a much broader sampling effort is essential to compare estuarine life 

histories among genetic stock groups.  We recommend a series of estuary-wide surveys 

be conducted during selected migration periods to compare the genetic origins of juvenile 

salmon in representative estuarine reaches from the river mouth to Bonneville Dam. The 

results would provide a fundamental screening of stock-specific distributions and help to 

identify key habitat complexes and concentrations of biocomplexity for designing more 

detailed salmon-habitat investigations in the upper estuary.  West Coast laboratories 

(Seeb et al. In press) continue to improve the genetics baseline for Chinook salmon.  This 

increased resolution will enable us to discern the finer details of estuarine-rearing 

behaviors and habitat requirements of diverse Columbia River ESUs.   

 

 The last 5 years of study have contributed substantially to our knowledge of 

salmon habitat use and life histories in the lower and mid-estuary.  However, this brief 

study period does not provide an adequate baseline for detecting long-term changes or 

interpreting their causes.  Estuarine habitats and salmon performance will continue to 

change in response to ongoing fish-production programs, land-use and development 

activities, hydropower management, habitat restoration efforts, and a rapidly changing 

Northwest climate (Mote et al. 2003; ISAB 2007).  Juvenile life histories, abundance, 

size composition, and genetic structure in the lower river provide cumulative indices of 

the basin-wide response of salmon populations to the Columbia River Basin Fish and 

Wildlife Program.  As research attention shifts to fill important data gaps in the upper 

estuary, a few indicator sites should be maintained in the lower estuary to monitor the 

status and trends of Columbia River populations, provide an early warning system for 

unanticipated problems, and assess the overall effectiveness of recovery actions 

throughout the basin. 
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