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Abstract 

This synthesis report was compiled in response to a request from regional fish managers for a 
summary of all pertinent information relevant to differential delayed mortality (D), and for a workshop to 
discuss current findings and future research needs as part of the regional process of the Studies Review 
Workgroup of the U.S. Army Corps of Engineers’ (USACE’s) Anadromous Fish Evaluation Program.  
D is the relative survival between barged and run-of-river (ROR) fish after passage through the Federal 
Columbia River Power System (FCRPS).  This measure is a convenient way to determine the relative 
benefit (or disadvantage) of juvenile fish transportation on their post-hydrosystem survival relative to that 
of ROR fish.  In this report, we provide a database of research studies related to D of spring/summer and 
fall Chinook salmon and steelhead and review the research to synthesize the patterns and possible causes 
of D.  We first provide frameworks in which specific factors of D can be related.  These include 1) a 
presentation of three main hypotheses (fish size, arrival date, and fish condition) with overarching 
theories that span all species and runs, 2) a comprehensive model, and 3) a culling model.  It is important 
to note that many factors have opposing effects on D, and thus multiple factors need to be considered in 
the same framework.  From our review and discussions at the 2011 Differential Delayed Mortality 
Workshop (Portland, Oregon), we identified and assessed 12 factors of D.   

We found that D varies with arrival timing to, and travel time through, the FCRPS and identified 
factors that may contribute to this pattern.  The seasonal effect of passage timing on D most likely 
involves temporal changes in fish length, estuary and ocean predation, and ocean conditions.  The 
correspondence of passage timing with fish physiology and disease appears to have secondary effects on 
D.  Time-independent (i.e., non-seasonal) factors include dam operations (spill versus transport), barging 
conditions (e.g., alternative barging strategy), and adult straying during upriver migration.  Factors that 
appear to have little influence on D include lower river (Bonneville Dam to rkm 56) conditions and 
predation, and certain barging conditions (e.g., noise).  Pre-hydrosystem conditions appeared to be of 
moderate, but uncertain, importance to D because they include factors that indirectly relate to other 
drivers of D.  We hypothesize that when D < 1 in the early season, barged spring/summer Chinook 
salmon and steelhead at the hydrosystem exit are smaller in length, have lower levels of osmoregulatory 
ability, slower travel rates, and greater susceptibility to predation in the estuary relative to their ROR 
counterparts.  In mid-season, when D > 1, barged fishes’ osmoregulatory ability and length have 
increased, their travel time in the lower river and estuary has decreased, while the energetic reserves of 
ROR migrants have decreased.  These factors are hypothesized to produce higher survival in barged fish 
than in ROR fish during the middle of the migration season.  When D < 1 at the end of the season, we 
hypothesize higher surface-water temperatures increase disease and energy loss in barged fish.  Thus, 
barged fish have lower survival rates than ROR migrants at the end of the season.  For fall Chinook 
salmon, we hypothesize that the low survival of barged fish relative to ROR migrants throughout the 
season is caused by high surface-water temperatures, which decrease the condition and energetic reserves 
of barged fall Chinook salmon and increase disease prevalence.  In addition, lower D for fall Chinook 
could involve the length differential between barged and ROR fish.  

To develop the roadmap of future research, we categorized the 12 D factors by the degree of 
importance to D (low, medium, high) by the extent of data gaps and key uncertainties (limited, extensive).  
Promising areas for future research fall into three major categories:  1) fish condition, 2) fish behavior and 
3) environmental conditions.  Key research topics include 1) whether low D is associated with small-sized 
fish within and across species, runs, and rearing types; 2) which physiological conditions and pathogen 
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prevalence are associated with low D in the lower river and estuary; 3) whether there is a collection bias 
of “weaker” fish in the juvenile bypass system and why; 4) what are the effects of the proportion of water 
spilled and the proportion of fish transported on D across a range of flow rates; and 5) which indices of 
estuary and ocean conditions are associated with D.  Possible approaches to investigating these topics 
include adventitious analyses of current data, collection of fish by a mobile Separation by Code system in 
the lower Columbia River and estuary, continued investigation of survival in the estuary and ocean using 
acoustic tags, longitudinal field studies or monitoring surveys of fish condition and health, and model 
simulations.  Although D is complex, tools are available to minimize data gaps and key uncertainties.  
Better understanding of the interaction of factors affecting D could allow real-time decisions to be made 
about when, where, and which species of juvenile migrating salmon or steelhead to barge. 
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Executive Summary 

The type of passage (barge vs. ROR) of juvenile salmon and steelhead through the Columbia River 
hydrosystem has a significant effect on their post-hydrosystem survivals. The effect has been viewed as a 
delayed mortality in that the hydrosystem passage experience affects the mortality of fish primarily in the 
estuary and ocean. The effect is important because the delayed mortality for barged and ROR passage 
types are significantly different and so when considering the benefits of each passage type, the associated 
delayed mortalities must also be considered. The direct survival in barging fish is on the order of 100% 
and after two decades of improvements to the hydrosystem, the direct survival of ROR fish within the 
hydrosystem is reaching an asymptote. Thus, further improvements in the overall fish survival are now 
focusing on reducing the delayed mortality associated with the passage types. In particular, further 
improvements to hydrosystem operations can be ascertained in terms of the relative delayed mortality of 
barged and ROR fish, which is designated differential delayed mortality. The focus of this report is to 
characterize the patterns and mechanisms of delayed mortality and identify potential future research that 
can resolve the uncertainties in the processes with the ultimate goal of reducing delayed mortality 
associated with both passage types.  

To remove contributions of ocean survival common to fish from both passage types we focus on the 
differential delayed mortality (D) which is the ratio of the post-Bonneville Dam (BON) survival (S) of 
barged fish (B) divided by the post-BON survival of run-of-river fish (R), B RD S S= .  By convention, 
D is calculated using information about the survival of fish from the time they pass Lower Granite Dam 
(LGR) as juveniles to the time they return to the hydrosystem as adults.  The calculation is  

B R

R B

SAR VD
SAR V

=  

where SARB and SARR are the smolt-to-adult return rates (SARs) from the juvenile barge-loading site to 
their return as adults at a point in the hydrosystem for barged and run-of-river (ROR) fish, respectively.  
To calculate D, the SARB and SARR are divided by the respective survival rates occurring between the 
barge-loading site and BON (VB and VR).  D varies within a year (i.e., seasonally) and across years (i.e., 
inter-annually), and differs among species (Chinook salmon [Oncorhynchus tshawytscha] and steelhead 
[O. mykiss]), run-types (spring/summer and fall Chinook salmon), and rearing types (hatchery and wild).  
Understanding and identifying the elements of delayed mortality is difficult because factors interact in 
ways that can obscure its true mechanisms.  Individual hypotheses have been proposed for why D differs 
from 1, but the accumulated evidence indicates there is no one factor or theory that can adequately 
explain patterns observed in D.   

The main goals of this synthesis were to accomplish the following: 

• Compile a database of research studies related to D. 

• Provide a conceptual framework to consider factors affecting D. 

• Review past and current research related to D, and identify data gaps and key uncertainties. 

• Conduct a regional workshop to discuss recent and ongoing research studies related to D, as well as 
prioritization of future research topics. 

g4pmpdat
Highlight
this is still phrased weird to me in this context

g4pmpdat
Highlight
would be better to simplify and say hydrosystem survival has been improved considerably over the past couple decades
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• Develop a roadmap of future research that would help better understand processes related to D and 
help determine ways of increasing the effectiveness of the Juvenile Fish Transportation Program, 
which transports fish downstream past most dams in barges or trucks. 

Database of Research Studies on D 

We reviewed and developed a database of over 200 research studies related to D.  References to these 
research studies are available in Appendix A with hyperlinks to abstracts and executive summaries within 
this report.  The database includes papers published in peer-reviewed journals, technical memos, annual 
reports, and reviews.   

Three Major Hypotheses 

A main goal of this report is to synthesize factors that affect D. We first state overarching hypotheses 
and then consider the detailed factors contributing to these hypotheses later in the report. The patterns of 
D can generally be considered in terms of three hypotheses that are not mutually exclusive.  The Fish Size 
Hypothesis attributes the D patterns primarily to the differential in the size of barged and ROR fish; 
barged fish do not grow during their 2-d hydrosystem passage.  The Arrival Time Hypothesis attributes 
the D patterns to the differential in arrival timing of barged fish and ROR fish; barged fish enter the 
estuary earlier than had they actively migrated and experience different environmental conditions.  The 
Fish Condition Hypothesis attributes the pattern in D to differential conditions of barged and ROR fish.  

Conceptual Framework 

We developed two frameworks in which to evaluate the effects of factors on D.  The first approach, 
designated the Multivariate Regression Model, is a proportional hazards model.  The second approach, 
designated the Culling Model, is based on a vitality model that characterizes the probability distribution 
of survival capacity, i.e., vitality.  

In the Multivariate Regression Model, the log of the post-hydrosystem survival is defined in terms of 
the additive sum of explanatory variables as 0log log ii

S S F= + ∑  where Fi is the post-hydrosystem 

mortality rate that is attributed to explanatory variable i.  Then D, which depends on the ratio of post-
hydrosystem survivals of fish from barged and ROR passage types, is defined by the passage type-
specific differences in the explanatory variables giving ( )exp iD F= ∆∑ .  The important point here is 
that D depends on the difference of the factors between the ROR and barged fish passage through the 
hydrosystem, manifested as survival differences during migration after passing downstream of BON. 

In the Culling Model, the distribution of survival capacity of fish entering the hydrosystem is adjusted 
first as they pass through the hydrosystem by barge and ROR passages and second as the fish pass 
through the estuary and ocean.  The distribution of survival capacity (designated vitality) of fish entering 
the hydrosystem is equivalent for barged and ROR fish and may change over time and run composition.  
As fish pass through the hydrosystem, the distribution of vitality changes by two processes.  First, 
intrinsic processes associated with growth, pathogen loading, and other forms of stress can increase or 
decrease the distribution of vitality during passage.  Second, extrinsic challenges, principally associated 
with predators and the physical effects of dam passage, selectively cull the individuals with lower vitality.  
Thus, the distribution of vitality among fish exiting the hydrosystem depends on the intrinsic and extrinsic 
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processes, which are different for each passage type.  Post-hydrosystem survival then depends on these 
distributions and any additional changes in intrinsic vitality in conjunction with post-hydrosystem 
extrinsic challenges, which again selectively remove the weaker individuals.  The rate of culling is driven 
by the magnitude and frequency of extrinsic challenges. 

Review of Literature on D  

Twelve factors hypothesized to contribute to D were identified and categorized by whether they are 
associated with the environment (open circled numbers) or with the state of the fish (closed circled 
numbers) (Figure S.1).  Based on our literature review, we determined whether there was support for 
these hypothesized factors, or whether the results were inconclusive.  We then categorized the 12 factors 
by degree of importance to D (low, moderate, high) and extent of data gaps and uncertainties (limited, 
extensive).  Factors of high importance were those with relatively strong and consistent effects on D with 
hypothesized mechanisms.  Factors of moderate importance were those with some effect on D, but which 
showed inconsistent patterns possibly because they were overwhelmed by other factors.  Factors of low 
importance were those with relatively little influence on D.  The categorization of factors helps determine 
which of these provide the greatest insight for management (high and moderate importance; limited data 
gaps and uncertainty) and which are the most productive areas for future research (high and moderate 
importance; extensive data gaps and uncertainty).  Overall, the research and published literature was most 
abundant for spring/summer Chinook salmon, and most deficient for fall Chinook salmon. 

  
Figure S.1. The Twelve Potential Factors Hypothesized to Influence D.  Factors are categorized 

according to whether they represent environmental conditions (open circles) or fish condition 
(closed circles). 

The 12 D factors hypothesized and evaluated are as follows: 

 Pre-hydrosystem conditions can affect the size, condition, disease susceptibility, and arrival 
timing of juvenile salmonids to the hydrosystem, and thus may indirectly affect D.  Water temperature, 
population density, flow, velocity, turbulence, and hatchery conditions are some of the environmental and 
ecological conditions that are likely to affect the size, condition, and arrival timing of juvenile salmonids.  
Factor  was categorized as having moderate importance to D and extensive data gaps and uncertainty.   

 Arrival time to the hydrosystem and travel time through the hydrosystem affect the timing of fish 
arrival at the lower river, estuary, and ocean, and thus influence the environmental conditions and 
predation risk that fish experience post-hydrosystem.  Although hydrosystem arrival time and travel time 
are not mechanistic factors, post-hydrosystem arrival timing is important because seasonal patterns in 
survival have been relatively strong across years of data.  D is generally below 1 in the early season, 
increases throughout the season, and sometimes drops quickly at the end of the season.  Seasonal patterns 
in survival rates in the lower river and estuary (LRE) are also apparent for spring/summer and fall 
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Chinook salmon.  Further investigations of the mechanisms producing these seasonal trends in D are 
needed.  These include fish length, physiological condition, and estuarine and ocean conditions.  These 
factors are further considered below.  Factor  was considered to be of high importance to D and have 
limited data gaps and uncertainty. 

 Fish length is generally correlated with SAR, therefore factors that differentially affect the length 
distributions of fish, such as the lost opportunity to grow during barge transportation and differential 
entrainment into the bypass system, will affect D.  The seasonal increase in fish size upon arriving at the 
hydrosystem and its resulting effect on transport collection efficiency and post-hydrosystem survival is a 
potentially important mechanism for the seasonal changes in D.  The differences in sizes of barged and 
ROR fish that carry forward into the coastal ocean environment may affect survival through size-selective 
predation and through physiological processes (critical size hypotheses).  Factor  was considered to be 
of high importance to D and have extensive data gaps and uncertainty. 

 Fish physiology includes processes such as smoltification, depletion of energetic reserves, and 
stress that may influence migration readiness and the overall health of the fish.  Lower levels of 
smoltification in barged fish upon arrival downstream of BON are hypothesized to increase their travel 
time in the LRE, and consequently increase their post-hydrosystem predation risk relative to ROR fish.  
However, decreased energetic reserves in ROR fish and negligible loss of energetic reserves in barged 
fish during passage through the hydrosystem may counteract the differential effects of smoltification.  
Other indices of physiological condition such as stress hormones may be detected in barged juveniles, but 
do not necessarily translate into reduced SARs.  The diversity of responses shows that complex 
interactions can occur between environmental conditions, physiological responses, and survival rates.  
There will be a need to decipher which combinations of physiological indices can help decide when, 
where, and which to fish collect for an effective Juvenile Fish Transportation Program.  Factor  by and 
large was considered to be of moderate importance to D and have extensive data gaps and uncertainty. 

 Fish diseases may affect fish survival directly or indirectly through increased predation risk.  
Pathogen prevalence and load together can be indicators of the overall health of a group of fish.  
Contrasting patterns in the barge vs. ROR survival in disease-related experiments across several studies 
suggest that the pre-hydrosystem conditions of these fish are important.  It is important to understand that 
fish constantly move back and forth along a continuum of healthy to pathogenic states depending on the 
environmental conditions they experience, and thus may exhibit complex patterns in pathogen prevalence 
and survival.  Techniques, now available to sample pathogens non-lethally and assess both pathogen 
prevalence and pathogen load, would help in determining whether disease is a major driver of D patterns.  
If it is, the conditions that minimize pathogen transmission, such as those that have recently been 
identified for barging, can be implemented.  Factor  was considered to be of moderate importance to D 
and have extensive data gaps and uncertainty. 

➄ Dam operations are hypothesized to affect D via changes in passage conditions that alter 
cumulative stress effects.  Although compelling evidence has been found to suggest that undetected fish 
experience better ROR passage conditions than those detected in the bypass system and returned to the 
river, the exact causes are elusive.  Percent spill may also affect the proportion of fish transported, the 
survival of ROR migrants, and hence D.  Model simulations have shown that hatchery spring/summer 
Chinook salmon are more sensitive to spill, while steelhead are more sensitive to flow.  The mixed spill-
transport strategy implemented since 2006 will provide more data on how dam operations under various 
conditions of flow affect SARs and D.  Factor ➄ was categorized as having high importance to D with 
extensive data gaps and uncertainty. 
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➅ Barging conditions that have been hypothesized in the literature to affect D include 1) cumulative 
stress during dam passage as suggested by increased delayed mortality in fish that migrated in the river 
part-way and then were barged from dams downstream of Lower Granite Dam, 2) disruption of 
homeostasis and auditory sensitivity by dissolved metals and noise within barges, 3) diminished fish 
condition from high surface-water temperatures circulating in barges, particularly in fall Chinook salmon, 
and 4) decreased predation risk but increased straying from the alternative barging strategy near Astoria.  
Subhypotheses 1 and 3 were considered to be of moderate importance and have extensive data gaps and 
uncertainties. Subhypotheses 2 was considered not to be of importance and subhypothesis 4 was not 
considered not to be important because it is not a standard barging operation. 

➆ Lower Columbia River (BON to rkm 56) conditions and predation have been hypothesized to 
affect the differential survival between barged fish and ROR migrants.  Mechanisms include size-
selective predation and the seasonal pattern of fish migration rate through the lower river.  The literature 
shows that survival through this reach is relatively high for barged and ROR spring/summer Chinook 
salmon and steelhead.  However, differences exist between barged and ROR fall Chinook salmon.  Also, 
seasonal declines in survival have been observed across these species and runs.  Factor ➆ was deemed to 
be of low importance and have limited uncertainty for spring/summer Chinook salmon, but to be of 
moderate importance and have extensive uncertainty for fall Chinook salmon.   

➇ Estuarine conditions (downstream of rkm 56) and bird predation may affect smolt survival at the 
freshwater-saltwater interface where susceptibility depends on the species, level of smoltification, and 
fish condition.  The degree of smoltification, stress, and diseases in fish and the seasonal pattern of bird 
predation rates may contribute to the seasonal variations in D.  Most of the research on avian predation is 
focused on run-at-large fish and few, if any, have formally tested differences in the susceptibility of 
barged and ROR fish.  Striking and consistent patterns of decreased fish survival occur within the 
freshwater-seawater interfaces (rkm 0 to 32), but these were tested in run-at-large spring/summer and fall 
Chinook and steelhead.  Factor ➇ was considered to be of high importance to D and have extensive 
uncertainty.   

➈ Oceanic conditions can affect the seasonal and year-to-year variations in D.  Mechanisms may 
involve the timing and intensity of upwelling, spring productivity, and the arrival of ocean predators, 
alternative prey, and competitors.  The differential arrival timing to the estuary between barged and ROR 
fish together with the seasonal variations in ocean conditions appear to have a significant impact on the 
variations in D.  Factor ➈ was deemed to be of high importance to D and have extensive uncertainty. 

 Straying increases with rates of barging, possibly due to the impairment of the homing ability of 
the fish.  Differences in straying rates between barged and ROR fish are an example of a late-acting effect 
of barging on D, but their significance to D is likely minimal, especially in spring/summer Chinook 
salmon.  Factor  was deemed to be of low importance to D and have limited uncertainty. 

 The estimation of survival by tagged fish can also be influenced by passage type and hence affect 
estimates of D.  Estimates of the transport-to-in-river ratio (T:I) can be biased high because they are based 
on passive integrated transponder-tagged fish that are detected only when they pass through the bypass 
system and consequently experience lower survival than fish that pass through the spill route.  An 
alternative standard for T:I has been recently developed to compensate for the bias related to reduced 
survival of bypassed fish.  No estimates of an alternative D have been developed.  The estimation of 
survival as well as tagging effects were both considered to be of low importance to D but have extensive 
uncertainty.   
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Differential Delayed Mortality Workshop 

The 1.5-day workshop was held 10–11 May 2011 in Portland, Oregon, and was attended by at least 
42 participants.  Please see Appendix D for the agenda.  On the first day, presentations generally covered 
the topics of fish disease, physiology, and survival including the following:   

• a synopsis of this report 

• a culling model based on individual heterogeneity and degree of selection 

• general research approaches to investigate fish pathogens 

• differential physiological indices and gene expression 

• two potential issues with estimations of D 

• an adjusted standard for Transport:Migrant (T:M; also T:I) ratios to reflect higher survival of never-
detected fish relative to bypassed fish.   

On the second day, presentations covered the lower river, estuary, and ocean, including the following: 

• a comprehensive model to identify significant factors of D  

• within-barge survival rates 

• survival, travel time, and migration pathways in the LRE  

• annual and seasonal ocean conditions  

• the possibility of equivalent hydrosystem and coastal ocean survival rates.   

Many of the discussions about data gaps and key uncertainties were related to fish length, health, 
environmental conditions, and dam operations.  The effect of fish lengths, physiological condition, and 
pathogens on the differential survival of barged fish and ROR migrants was of general interest.  Whether 
fish condition caused bias in their entrainment into the juvenile bypass system was also discussed.  It was 
suggested that low D may be expressed in small-sized fish and not larger-sized fish.   

Roadmap for Future Research  

We discuss areas of research in relation to when to barge, how many to barge, which fish to barge, 
where to begin barging, and how to barge.  Finally, we present the roadmap for future research, which 
addresses some key questions, their relevance to the Juvenile Fish Transportation Program, some 
potential research approaches, the approximate durations of study, and potential challenges that can be 
addressed.  The categorization of hypothesized factors by the degree of importance to D and by the extent 
of data gaps and uncertainty were used to determine areas of future research with the greatest potential to 
inform the management of the Juvenile Fish Transportation Program. 

The proposed future research opportunities generally fall into three major categories that focus on fish 
condition, fish behavior and environmental conditions, with some interaction between these categories.  
Research topics of interest in the fish condition category relate to the effects of fish size, physiological 
condition, and pathogen load on D.  One key research question is whether smaller fish experience lower 
survival than larger fish within and across species, runs, and rearing types to produce the patterns of D 
observed.  Fish condition could also affect their swimming behavior and probability of entrainment into 
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the bypass system, thus possibly causing selection of “weaker” fish for transportation.  But much 
uncertainty remains.  Research topics of interest in the ecological and environmental conditions category 
include the correlative effects of proportion of spill and proportion of fish transported on D across a range 
of flow rates, and determination of indices of estuary and ocean conditions associated with D.  Possible 
approaches to investigating these topics include adventitious analyses of current data and model 
simulations; surveys or monitoring programs of fish conditions with fish collections by a mobile 
Separation by Code system in the LRE; challenge experiments of fish collected that were entering and 
exiting the hydrosystem by ROR and barge passage types; and continued investigation of survival in the 
estuary using acoustic tags.   

Hypotheses related to D have been and continue to be refined.  As data collection and improvements 
in technology continue, the region is gaining a better understanding of this complex issue that spans large 
spatial and temporal scales and that involves many interacting factors.  As we gain a better understanding 
of the processes affecting D, we are working toward the possibility of a real-time monitoring program in 
which the indices collected and modeled with historical data help predict D and SARs.  When that 
possibility is realized, web-based real-time monitoring and predictions could help inform transport 
decision-making. 
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Acronyms and Abbreviations 

°C degree(s) Celsius (or Centigrade) 
 
ADP adenosine diphosphate 
AFEP Anadromous Fish Evaluation Program 
AIC Akaike information criterion 
AT acoustic transmitter  
ATPase adenosine triphosphatase 
 
B:I barge-to-in-river ratio 
B/I bypass-to-in-river migrant ratio 
BKD bacterial kidney disease 
BON Bonneville Dam 
 
cDNA complementary DNA 
CF condition factor 
cfu colony-forming unit(s) 
CI confidence interval 
cm centimeter(s) 
COMPASS Comprehensive Passage 
CRE Columbia River Estuary 
CSS Comparative Survival Study 
CWT coded wire tag 
 
ΣDDT Σ dichlorodiphenyltrichloroethane 
D differential delayed mortality 
d day(s) 
DDT dichlorodiphenyltrichloroethane 
DNA deoxyribonucleic acid 
DWK Dworshak Hatchery 
 
ELISA enzyme-linked immunosorbent assay 
 
FAC fluorescent aromatic compound 
FCRPS Federal Columbia River Power System 
FDL Fish Disease Laboratory 
FL fork length 
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µg microgram(s) 
g gram(s) 
g/L gram(s) per liter 
gpm gallon(s) per minute 
 
h hour(s) 
HEWL hen egg-white lysozyme 
HMSC Hatfield Marine Science Center 
 
ICH Ice Harbor Dam 
IHNV infectious hematopoietic necrosis virus 
I/R in-river-to-barge 
ISAB Independent Scientific Advisory Board 
 
JDA John Day Dam 
JSATS Juvenile Salmon Acoustic Telemetry System 
kcfs kilo cubic feet per second 
kcms kilo cubic meters per second 
km kilometer(s) 
km/d kilometer(s) per day 
 
L liter(s) 
lb/gal pound(s) per gallon 
LC50 lethal concentration at 50% incidence of mortality 
LGR Lower Granite Dam 
LGS Little Goose Dam 
LRE lower river and estuary  
LMN Lower Monumental Dam 
 
m meter(s) 
MCN McNary Dam 
mg milligram(s) 
mL milliliter(s) 
mm millimeter(s) 
mS millisiemen(s) 
 
ng nanogram(s) 
ng/g nanogram(s) per gram 
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NOAA National Oceanic and Atmospheric Administration 
NPT non-PIT-tagged 
 
PAH polycyclic aromatic hydrocarbon 
PBDE polybrominated diphenyl ether 
PCB polychlorinated biphenyl 
PCV packed cell volume(s) 
PCR polymerase chain reaction 
PHN phenanthrene 
PIT passive integrated transponder 
PITAGIS PIT Tag Information System 
PNNL Pacific Northwest National Laboratory 
PNWD Battelle–Pacific Northwest Division 
 
rkm river kilometer(s) 
RM river mile(s) 
RM&E research, monitoring, and evaluation 
RNA ribonucleic acid 
ROR run-of-river 
RR Rapid River Hatchery 
 
SAR smolt-to-adult return rate 
SbyC Separation by Code 
SE standard error 
SS spring/summer 
 
T:I Transport:In-river; transport-to-in-river ratio (equivalent to T:M) 
T:M Transport:Migrant; transport-to-migrant ratio (equivalent to T:I) 
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1.1 

1.0 Introduction 

Barge transportation of juvenile salmonids is one of the major mitigation strategies implemented by 
the U.S. Army Corps of Engineers (USACE) to increase salmonid survival in the Federal Columbia River 
Power System (FCRPS) (Figure 1.1).  Survival through the FCRPS is approximately 98% for barged 
yearling Chinook salmon (McMichael et al. 2010) and approximately 50% for run-of-river (ROR) 
migrants that pass through the dams (Williams et al. 2005).  However, the post-hydrosystem survival of 
barged fish is often lower than that of ROR fish, and is sometimes low enough to offset the survival 
benefit of barging through the hydrosystem.  Differential delayed mortality (D) is a convenient way to 
discuss differences between barged and ROR fish occurring after they pass Bonneville Dam (BON).  
Although the ratio of smolt-to-adult return rates (SARs) for barged versus ROR fish, also referred to as 
the transport to in-river ratio (T:I), is a better metric for evaluating whether transport increases adult 
returns, D is a useful metric for understanding how differential survival downstream from the release 
point (which includes a form of delayed mortality) influences the effectiveness of the Juvenile Fish 
Transportation Program.  The term D summarizes the differences in mortality between barged and ROR 
that occur after hydrosystem passage in the lower river, estuary, ocean, and during upstream migration.   

 

 
Figure 1.1. Diagram of ROR Migration and Barge Transportation of Juvenile Salmonids Across the 

FCRPS.  Only the first and last dams of the hydrosystem are shown.   

Regional fish managers requested a summary of all pertinent information relevant to D and a 
workshop to discuss current findings and a roadmap for future research as part of the regional process of 
the Studies Review Workgroup of the USACE Anadromous Fish Evaluation Program.  Battelle–Pacific 
Northwest Division (PNWD) and Anderson Consultant provided this report which includes a synthesis of 
research related to D for wild and hatchery spring/summer and fall Chinook salmon (Oncorhynchus 
tshawytscha) and steelhead (O. mykiss).  We focused on research published since 2005 because earlier 
works were reviewed in the 2004 Comparative Survival Study (CSS) Workshop (Marmorek et al. 2004) 
and the white paper by the National Oceanic and Atmospheric Administration (NOAA) on the effects of 
the FCRPS on salmonid populations (Williams et al. 2005).  However, for topics without recent research, 
we included older literature. 

This report begins with a background on the definition of D, its relationship to other survival 
estimates, and species-, run-, and rear-specific patterns that occur inter- and intra-annually (Sections 2.1 

Barge Transportation 
ROR Migration 

R 

B 
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and 2.2).  Prior to reviewing the 12 hypothesized factors of D (Section 4.0), three major hypotheses are 
introduced (Section 2.3) and two models are presented (Section 3.0) to help provide an overall framework 
within which the specific factors can be interpreted.  In our review of the 12 D factors (Section 4.0), each 
factor is first considered individually with a synthesis of the literature, an assessment of its degree of 
importance relative to all other factors considered in this report, a categorization of the extent of data gaps 
and uncertainty, and a discussion of potential future research questions and study approaches.  As part of 
this review, a database of references and abstracts/summaries of relevant literature was compiled 
(Appendix A), select USACE-funded research studies were synthesized and evaluated (Appendix B), 
and fish tagging-related studies were synthesized in a table (Appendix C).  Also, a regional workshop 
(10–11 May 2011, Portland, Oregon) was organized to help participants learn about and discuss current 
research studies related to D, as well as to discuss the importance of factors to D and identify the extent of 
data gaps and uncertainty.  The agenda of the 2011 Differential  Delayed Mortality Workshop is 
contained in Appendix D, summaries of the presentations and discussions are included in Appendix E, a 
transcript of the workshop is presented in Appendix F, and survey results are included in Appendix G.  
Based on our review and the discussions at the workshop, we developed a roadmap for future research 
(Section 5.0).  This section includes key management questions that are generally addressed (Section 5.1) 
and an extended version of the future research roadmap (Section 5.2).  A brief comparison of this current 
synthesis report to the report summarizing the 2004 Comparative Survival Study Workshop is contained 
in Appendix H.  References for sources cited in the main text and in the appendices (excluding the 
literature database in Appendix A) are listed in Section 6.0. 

 



 

2.1 

2.0 Differential Delayed Mortality 

This section begins by defining differential delayed mortality (Section 2.1), and continues to describe 
some temporal patterns of D by species (i.e., Chinook salmon and steelhead), run (i.e., spring/summer and 
fall Chinook salmon), and rearing type (i.e., wild and hatchery) across years and within the migration 
season (Section 2.2).  General patterns in the arrival time of fish are presented to help interpret the 
seasonal patterns of D within and across species and runs.  Ways of interpreting D relative to survival 
rates within the hydropower system and to SARs are also described.  We end with a presentation of three 
major hypotheses explaining the patterns of D (Section 2.3). 

2.1 Definition of D 

Differential delayed mortality, designated D, is the ratio of the post-hydrosystem survival (S) of 
barged fish (B) divided by the post-hydrosystem survival of ROR fish (R): 

 B

R

SD
S

=  (2.1) 

The term expresses the relative post-hydrosystem of fish from the two passage types.  Values of D 
less than 1 indicate run-of-river fish survival better in the ocean than barged fish and values of D greater 
than 1 indicate the barged fish survive better than run-of-river fish.  By convention, the post-hydrosystem 
survivals, SB and SR, are defined from the point juvenile fish enter the river downstream of BON to their 
arrival as adults to Lower Granite Dam (LGR) at the upstream end of the FCRPS.  The condition of the 
fish exiting the hydrosystem affects their survival until their return as adults.  The condition of juvenile 
fish exiting the hydrosystem depends on their passage experience within the hydrosystem and their 
condition when they first enter the hydrosystem at LGR as juveniles.  Thus, the term differential delayed 
mortality denotes the belief that detrimental effects (i.e., mortality) resulting from a fish’s freshwater 
experience may not be realized until after the fish exit the hydrosystem.  However, the terminology fails 
to capture the possibility that differential post-hydrosystem mortality between barged and ROR migrants 
is influenced by the conditions of the post-hydrosystem environment.  For example, the timing of ocean 
entry may differ for barged and ROR fish, exposing them to differing environmental conditions that 
would result in differential mortality even if the fitness of the groups did not differ. 

By convention, D is calculated using information about the survival of fish from the time they pass 
LGR as smolts to the time they return to the hydrosystem as adults.  The calculation of D is as follows: 

 B R

R B

SAR VD
SAR V

=  (2.2) 

where SARB and SARR are the SARs from the barge-loading site (e.g., LGR) of juveniles and back as 
adults to a point in the hydrosystem (e.g., LGR) for barged and ROR fish, and VB and VR are the survival 
rates between the barge-loading site (e.g., LGR) and BON, effectively the barge release site, for the 
two groups. 
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Unfortunately, an SAR can be defined in many ways, making for different definitions of D.  
Buchanan et al. (2006) identified eight different measures of transportation effects that consider SARs 
from specific individual transport dams, across all dams, and including or excluding the effects of 
transport or ROR fish at lower river dams, or including versus excluding untagged fish in the estimates.  
Consideration of these details in the definition of SAR is beyond the scope of this report.  Using a 
particular definition of SAR can affect the magnitude of SAR estimates, but should have little effect on 
general trends in D and the discussion of the factors that contribute to D.  Furthermore, SAR can be 
defined from the transport dam to either LGR or BON, which includes or excludes the effects of juvenile 
hydrosystem passage differences on the upstream migration of adults.  The estimates by Buchanan et al. 
(2006) were for across-year estimates of transport effect.  Buchanan et al. (2006) pointed out that 
considering within-season variations further complicates the estimates of transportation effects.  Muir et 
al. (2006) considered the within-season estimates using passive integrated transponder (PIT)-tag groups 
that were collected at LGR as juveniles and returned to LGR as adults.  Finally, Scheuerell et al. (2009) 
considered SARs of Chinook salmon from BON as juveniles to their return to LGR as adults.  Because 
D is calculated from a ratio of SAR values, it is important to ensure that the values represent the same 
starting and ending points within the same D estimate. 

2.2 Patterns of D 

Many factors are hypothesized to influence D, and the patterns that arise among species and years, 
and those that develop throughout the migration season can reveal which factors are important.  These 
patterns are a valuable source of information for evaluating proposed hypotheses, and they may also 
reveal where management actions could be effective in altering D or improving SARs. 

2.2.1 Yearly Averaged D 

General averages of D across years are illustrated in Table 2.1.  From 1997 to 2008, wild Chinook 
salmon generally had a lower geometric mean of D (0.60; 90% CI = 0.48-0.75) than hatchery Chinook 
salmon (Petrosky 2010; Tuomikoski et al. 2010; Wilson 2010).  For hatchery spring Chinook salmon 
represented by Rapid River, Dworshak, and McCall hatcheries and Catherine Creek and Imnaha artificial 
production, D was approximately 1 (Petrosky 2010; Tuomikoski et al. 2010, Table 3.2).  For wild and 
hatchery steelhead, geometric means of D from 1997 to 2007 were 0.99 (90% CI = 0.61-1.61) and 0.99 
(90% CI = 0.68-1.46), respectively.  T:I estimates were generally equivalent to or greater than 1 for wild 
and hatchery spring/summer Chinook and steelhead.  Estimates of D and T:I for fall Chinook salmon are 
difficult to estimate due to small sample sizes that provide limited statistical power to establish whether or 
not D tends to exceed 1.  For fall Chinook salmon, estimates of D are generally low, but statistically have 
large confidence intervals (Williams et al. 2005; Marsh et al. 2010a).  It is thus unknown whether D is 
truly more or less than 1.  The T:I for fall Chinook salmon likely falls between 0.67 and 1.5, and D falls 
between 0.67 and 1.5 times the in-river survival rate.  Estimates of survival to the lower river and estuary 
(LRE) across the season show that fall Chinook salmon survival rates, especially for barged fish, are 
lower than those of spring/summer Chinook salmon and steelhead (Schreck et al. 2005; Clemens et al. 
2009), and are suspected to be as low as 0.2 (Marmorek et al. 2004).  Although data are relatively limited 
for fall Chinook salmon, D is generally believed to be less than 1.  
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Table 2.1. General Estimates of D and Transport-to-In-River Ratio (T:I) (modified from Petrosky 2010; 
Tuomikoski et al. 2010; Wilson 2010) 

 Years D T:I 

Hatchery 
spring/summer Chinook 

1997-2008 D ~ 1 
D < 1 in 14/56 annual estimates 
D ~ 1 in 36/56 annual estimates 
D > 1 in 6/56 annual estimates 

T:I ≥ 1 
T:I < 1 in 3/56 estimates 
T:I ~ 1 in 22/56 estimates 
T:I > 1 in 31/56 estimates 

Wild spring/summer 
Chinook 

1994-2008 D ≤ 1 
D < 1 in 8/15 years 
D ~ 1 in 7/15 years 
D > 1 in 0/15 years 

T:I ~ 1 
T:I < 1 in 2/15 years 
T:I ~ 1 in 11/15 years 
T:I > 1 in 2/15 years 

Hatchery steelhead 1997-2007 D ~ 1 
D < 1 in 2/11 years 
D ~ 1 in 6/11 years 
D > 1 in 3/11 years 

T:I ≥ 1 
T:I < 1 in 0/11 years 
T:I ~ 1 in 4/11 years 
T:I > 1 in 7/11 years 

Wild steelhead 1997-2007 D ~ 1 
D < 1 in 3/11 years 
D ~ 1 in 7/11 years 
D > 1 in 1/11 years 

T:I ≥ 1 
T:I < 1 in 0/11 years 
T:I ~ 1 in 6/11 years 
T:I > 1 in 5/11 years 

Fall Chinook  D < 1 ? T:I < 1 ? 

2.2.2 Seasonal Patterns in D 

Seasonal variation occurs in D.  Eq. (2.2) shows that D varies with SARs and hydrosystem system 
passage survival estimates.  Because hydrosystem survival rates are not highly variable, the ratio of 
barge-to-in-river SARs (i.e., T:I) can provide an index of D within a season.  Therefore, for the purposes 
of characterizing the seasonal variation in D, T:I provides a good illustration of the pattern.  The patterns 
of SARs are themselves highly variable but seasonal variations in D, using T:I as an index of D, are less 
variable (Figure 2.1).  A general pattern occurs for passage history types with an increasing SAR in 
barged fish over the season and a variable or decreasing SAR for ROR fish.  Consequently, the ratio of 
the two generally increases across the season—beginning the season < 1 and increasing, as illustrated in 
the seasonal trends for wild and hatchery steelhead and spring/summer Chinook (Figure 2.2).  Figure 2.3 
illustrates weekly averaged values of D for hatchery yearling Chinook.  Figure 2.4 shows the survival, D, 
and collection distribution of hatchery and wild steelhead tagged at LGR in 2000 and 2003, respectively 
(Marsh et al. 2004, 2008).  It illustrates that the seasonal pattern of D can differ between hatchery 
(seasonal increase) and wild steelhead (no consistent pattern).  No seasonal data for fall Chinook are 
available.  Overall, the following patterns occur:  1) T:I, and presumably D, generally increases through 
the season; 2) steelhead have higher T:I or D values than Chinook salmon; and 3) within a species, 
hatchery fish have higher D values than wild fish.  

Several studies define seasonal patterns in terms of early, middle, and late migrating spring/summer 
Chinook salmon where the divisions between the intervals are divided roughly equally between late April 
and late May.  These divisions can capture some of the variation in D and T:I through the season given 
the logistical constraints of field-based research and data collection. 
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Figure 2.1. SAR, T:I and D of Hatchery Spring/Summer Chinook Salmon throughout the 1999 

Outmigration Year.  A) Seasonal variations in SAR of yearling (spring/summer) Chinook 
from LGR for the barged group () and ROR (- - -) migration types (redrawn from 
Anderson et al. 2005).  B) The T:I of yearling Chinook salmon from LGR () and weekly D 
(•) for spring Chinook in 1999 (Muir et al. 2006).   

 
Figure 2.2. The T:I of Hatchery and Wild Spring/Summer Chinook Salmon and Steelhead from the 1999 

Outmigration Year 
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Figure 2.3. Seasonal Variation in D for Hatchery and Wild Spring/Summer Chinook.  Years for hatchery 

Chinook, 1997–2006; years for wild Chinook, 1998, 1999, 2002–2006.  Data through 2004 
from Muir et al. (2006); data from 2005 and 2006 (Muir, personal communication).  Circles 
with + designate migration year 2001. 

 

 
Figure 2.4. Survival, D, and Collection Distribution of Steelhead Tagged at LGR.  Top graph shows 

estimates for hatchery steelhead in 2000, and bottom graph shows estimates of wild 
steelhead in 2003.  Reproduced from Marsh et al. (2004 and 2008) with permission. 
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2.2.3 Patterns by Run Type 

From the cumulative evidence, two essential patterns emerge:  1) D often increases over the migration 
season for hatchery spring Chinook and steelhead, and 2) larger fish have higher D than smaller fish 
(Table 2.2).  Table 2.2 conceptually illustrates the relationship between travel time, fish size, and D across 
species, runs, and rearing types. 

Table 2.2. Patterns of Fish Size, D, and Travel Time Through the FCRPS of Salmonid Runs and 
Rearing Types (SS represents spring/summer) 

Variable Pattern Across Salmonid Runs and Rearing Types 
Fish size in decreasing order Hatchery 

steelhead 
> Wild 

steelhead 
> Hatchery  

SS Chinook 
> Wild  

SS Chinook 
> Fall 

Chinook 
D in decreasing order Hatchery 

steelhead 
~ Wild 

steelhead 
~ Hatchery  

SS Chinook 
> Wild  

SS Chinook 
> Fall 

Chinook 
Travel time in increasing order Hatchery 

steelhead 
~ Wild 

steelhead 
> Hatchery  

SS Chinook 
~ Wild  

SS Chinook 
~ Fall 

Chinook 

2.2.4 Arrival Time of Fish 

Characteristic arrival times of fish to LGR are plotted in Figure 2.5.  Because SARs and D vary 
widely across the season, variation in arrival times could greatly influence annual estimates of SARs 
and D. 

2.2.5 Management Implications 

D is of interest to the management and recovery of listed salmon and steelhead stocks because it 
contrasts the impacts of barge transportation with in-river hydrosystem passage on the survival of the fish 
as they continue their migration to complete their life histories.  It is important to note that a relatively 
high D does not indicate that the rate of adult return is high.  At the end of the season and in certain years, 
D can be very large, but overall survival rates can be low.  D is a relative ratio and not an absolute 
measure of survival.  The value of D is an indicator of differences related to management actions, but it 
does not capture all factors influencing the efficacy of transportation. 

The value of D does not encompass all of the differences in survival among barged and ROR groups.  
To gain a better understanding of the overall benefits of transportation on SARs, one can compare the 
values of D in the context of the T:I ratio (Giorgi et al. 2002).  T:I is equal to SART / SARI from the 
juvenile fish transport site to when adults return (generally to LGR), and where T denotes barge 
transported fish and I denotes in-river migrants.  Because survival in the barge is nearly 100% (recently 
estimated as 98%, McMichael et al. 2010), the overall survival benefit of barging is lost as D approaches 
the in-river survival rate.  Assuming that within-barge survival is 1, the relationship of D is reduced to the 
following:   
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Figure 2.5. Mean Run Timing at Lower Granite Dam of Wild Spring/Summer Chinook Salmon, 
Steelhead, Fall Chinook Salmon (1989–2010) on the Left, and Mean Run Timing of 
Combined Wild and Hatchery Spring/Summer Chinook Salmon (1985–2010), Steelhead, and 
Fall Chinook Salmon on the Right.  Graphs from DART (www.cbr.washington.edu/dart/), 
accessed 5 July 2011. 

Thus, transportation increases adult returns whenever D exceeds the in-river survival rate, i.e., when 

RD V> .  In Figure 2.6, four key scenarios of various values of D, T:I and VR are described with 
examples.  One of the examples shows that when D drops downstream of the in-river survival rate, a 
smaller proportion of fish that were barged would return as adults, relative to in-river migration, for a 
T:I < 1.   
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D values vary within and across years, and are different among species (e.g., Chinook salmon and 
steelhead), run types (e.g., spring/summer and fall Chinook salmon), and rearing types (i.e., hatchery 
versus wild).  A mixed population with temporal variations in D makes it difficult to evaluate the benefits 
of transportation and to manage transportation operations to ensure that T:I exceeds 1.  Thus, individual 
factors in a conceptual framework within and across years must be considered to gain a better 
understanding of D patterns. 

 
Figure 2.6. Four Scenarios of Various Values of D, VR, and T:I for Fish Transported from Lower Granite 

Dam.  VB is assumed to equal 1.   

If D < 1 and D = VR, then T:I = 1 
 
When D is less than 1 and also equal to VR, T:I is 
equal to 1.  Transporting fish does not have positive  
or negative effects on SARB relative to SARR. 
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ROR migrants: 
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When D is greater than 1, T:I is always greater than 1.  
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 If D < 1 and D > VR, then T:I > 1 
 
When D is less than 1, but greater than VR, then T:I is 
greater than 1.  Transporting fish has positive effects 
on SARB relative to SARR. 
 
e.g.,  
 
Barged fish: 
 
 
 
 
 
ROR migrants: 
 
 
 
Therefore, T:I = 1.6 
   D = 0.8 
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When D is less than 1 and also less than VR, then T:I is 
less than 1.  Transporting fish has negative effects on 
SARB relative to SARR. 
 
e.g.,  
 
Barged fish: 
 
 
 
 
 
ROR migrants: 
 
 
 
Therefore, T:I = 0.8 
   D = 0.4 
 

 
LG

R
 

 B
O

N
 VB = 1 

SB = 0.4 

 
LG

R
 

 B
O

N
 VR = 0.5 

SB = 0.5 

 
LG

R
 

 B
O

N
 VB = 1 

SB = 0.2 

 
LG

R
 

 B
O

N
 VR = 0.5 

SB = 0.5 



 

2.9 

2.3 Major Hypotheses Explaining D  

In recasting D in a larger context we need encompassing hypotheses and theories spanning all 
salmonid runs and rearing types within and across the migration season.  We have failed to understand D 
if we have one theory for steelhead and another for fall Chinook salmon.  We have failed to understand 
the issue if we consider yearly averaged values of D and ignore the seasonal variations observed in some 
stocks or differences in transport locations.  However, achieving an overarching theory across all species 
and runs is not a trivial undertaking.  At its ecological basis, post-hydrosystem survival depends on the 
ability of smolts to feed and avoid predators.  A considerable number of studies have investigated the 
factors by which the hydrosystem passage affects post-hydrosystem survival.  However, the goal of this 
report is a synthesis of the factors that affect D, so our approach here is first to state overarching 
hypotheses that have been proposed to explain the patterns of D and then present a mathematical 
framework in which to evaluate these hypotheses.  We then consider the detailed factors contributing to 
these hypotheses in Section 4.0. 

The patterns of D can generally be considered in terms of three hypotheses that are not mutually 
exclusive.  The Fish Size Hypothesis attributes the patterns primarily to the differential in the size of 
barged and ROR fish; barged fish do not grow during their 2-d hydrosystem passage.  The Arrival Time 
Hypothesis attributes the patterns to the differential in arrival timing of barged fish and ROR fish; barged 
fish enter the estuary earlier than had they actively migrated .  The Fish Condition Hypothesis attributes 
the patterns in D to differences in the condition (nutrition, disease, or stress levels) of barged and ROR 
fish. 

2.3.1 Fish Size Hypothesis  

Research on salmonid stocks from Alaska, British Columbia, Washington, Russia, Norway and 
Scotland have shown that fish size is an important factor, among others, to their marine survival (Parker 
et al. 1992, Friedland et al. 2000, Beamish and Mahnken 2001, Moss et al. 2005, Farley et al. 2007a, 
Cross et al. 2009, Duffy and Beauchamp 2011, Clairborne et al. 2011).  A critical size at ocean entry 
(Parker 1968, Pearcy 1992) and another critical size after growth during the critical period of their first 
spring and summer in the marine environment (“Critical Size, Critical Period” hypothesis; Beamish and 
Mahnken 2001) have been hypothesized to explain marine survival of salmonids.  The first critical size 
relates to the high mortality rates that fish experience when they enter the ocean (Parker 1968), and this 
mortality is partly due to size-selective predation (Pearcy 1992).  The second critical size is growth- and 
physiologically-based, is thought to influence mortality during the fall and winter of their first ocean year, 
and links climate-driven processes to salmon production.  Further details on the research conducted on 
critical sizes of salmonid species in relation to their marine survival are summarized in Section 4.2.3.5 as 
motivation to consider this factor of fish size in relation to D.  The purpose of this section is to introduce a 
concept of fish size across the different species and runs of salmonids and their associations with SAR 
and D. 

This hypothesis is based on the concept that smaller fish have lower post-hydrosystem survival than 
larger fish, but the effect diminishes with increasing size as is illustrated in Figure 2.7.  This hypothesis 
fits with the general run ordering of fish size and D, with larger fish having higher D than smaller fish, as 
illustrated in Table 2.1 and Table 2.2.  In addition, the hypothesis generates a seasonally increasing D if 
the fish entering the hydrosystem increase in size over the migration season, while the size of ROR fish 
exiting the hydrosystem remains fixed.  The hypothesis is a form of the “lost growth opportunity” 
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hypothesis from Muir et al. (2006)  and provides a possible explanation for the general pattern of D across 
species, runs, and rearing types.  As depicted in Figure 2.7, fall Chinook salmon are the smallest fish 
among those considered and are assumed to have the greatest size differential effects and the lowest D, 
such that barged fish survive poorly compared to their ROR counterparts.  At the other extreme, hatchery 
steelhead are the largest fish of the species and runs considered.  With the hypothesized asymptotic 
pattern of survival relative to fish length (Figure 2.7), the survival differential between barged and ROR 
hatchery steelhead is the smallest.  Therefore, their D values are the largest among the species and runs, 
and this is what is generally observed (Table 2.1).  For the other migrants, wild steelhead, hatchery spring 
Chinook, and wild spring Chinook are ordered from larger to smaller size (Table 2.2).   

 
Figure 2.7. Hypothetical Relationship Between Fish Length of Each Species, Rearing Type, and Passage 

Type at BON and Post-BON SAR (top graph) and the Corresponding Values of D Relative to 
Their Lengths at LGR (bottom graph).  BCh.0, BCh.1, and BSt correspond to the fish lengths of 
subyearling Chinook salmon, yearling Chinook salmon, and steelhead respectively at BON, 
and RCh.0, RCh.1, and RSt correspond to the fish lengths of these respective ROR counterparts 
also at BON (top graph).  The greater the fish length at BON for any of the species and 
rearing types, the greater the survival.  In the bottom graph, note that there is negligible 
growth experienced by barged fish from LGR to BON, as represented by the dashed gray 
lines between the top and bottom graphs.  In contrast, the ROR fish gain length from LGR to 
BON.  Thus, with the curved relationship in the top graph, the ratio of post-BON SARs 
(i.e., D) increases across subyearling Chinook, yearling Chinook, and steelhead in the bottom 
graph.   
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Furthermore, within the outmigration season of a species, run and rearing type, such as the hatchery 
spring/summer Chinook salmon, a size differential can also occur.  This pattern appears quite consistently 
and we postulate that the seasonal pattern of D can be looked at in terms of three distinct periods 
(Figure 2.8):  in Period I (early season) transport fish enter the estuary at a relatively small size; in Period 
II (mid-season) transport fish are larger and so survive better than their ROR counterparts; while in Period 
III (late season), fall Chinook migrate and are small, thus experiencing relatively high rates of mortality.  
Note that through this mechanism, D depends on the differential in size-related survival rates between 
barged and ROR fish.  In this hypothesis, D never exceeds 1 because barged fish are expected to never be 
greater in size than ROR fish.  ROR fish have greater growth opportunity than barged fish prior to ocean 
entrance (Muir et al. 2006) and the collection screens at dams select for smaller fish in some cases (Zabel 
et al. 2005).  Thus, this mechanism can explain, in part, the differences in D between species and run 
types but it cannot account for conditions in which D is greater than 1.  

 
Figure 2.8. Ratio of Transport to In-River SAR (T:I) for Spring Chinook () (Anderson et al. 2005) and 

Weekly D (•) for Spring Chinook in 1999 (Muir et al. 2006).  Arrows indicate across-year 
average estimates of D.  Periods indicate early season (Period I) where D < 1, middle season 
(Period II) where D ≥ 1, and late season (Period III) where D < 1.  Period patterns I and II 
are representative of spring/summer Chinook salmon and steelhead; Period III is 
representative of fall Chinook salmon. 

The pattern generated under this hypothesis depends on the shape of the pattern of length versus post-
hydrosystem survival of fish plus factors that determine the sizes of ROR and barged fish at the 
hydrosystem exit.  As proposed in Muir et al. (2006), we also hypothesize that the size-frequency 
distribution of gape-limited predators in the lower river, estuary, and ocean shapes the curve illustrated in 
Figure 2.7.  Other factors covarying with size may also contribute to the size-dependent survival pattern.  
For example, Schreck et al. (2006) proposed that the susceptibility to avian predators depends on the level 
of smoltification of fish entering saltwater.  Because barged fish exit the hydrosystem prior to ROR fish, 
as well as being smaller they are expected to be less prepared to enter seawater.  The combined effect 
could steepen the size versus survival pattern and result in smaller D for barged fish earlier in the 
migration season.   



 

2.12 

2.3.2 Arrival Time Hypothesis  

The seasonal patterns often observed in spring/summer Chinook salmon and steelhead (Figure 2.8) 
suggest that arrival timing of the fish downstream of the hydropower system is an important aspect to 
consider.  Barged fish arrive in the LRE 2 and 3 weeks earlier than ROR fish and this differential could 
shape the seasonal pattern of D.  Support for this hypothesis comes from a study by Scheuerell et al. 
(2009) that found post-hydrosystem survival (BON to LGR) of PIT tagged wild ROR spring Chinook and 
steelhead declined over the migration season.  However, the pattern of decling survival over the migration 
season did not correlate with patterns of costal upwelling or river temperature at Bonneville Dam.  They 
suggested that the decline in survival might have been affected by the later season increase in numbers of 
predatory fish in the Columbia River plume and avian predator in the Columbia River estuary.  Arrival 
time can be an important index to relate to SARs and D because it relates to seasonally-varying fish and 
environmental conditions.  Many of the factors reviewed in Section 4.0 have a seasonal component.  For a 
graphical summary of seasonally varying factors and their hypothesized effects on barged and ROR 
SARs, see Section 4.4.1.  

2.3.3 Fish Condition Hypothesis 

This hypothesis attributes changes in seasonal D principally to changes in ROR fish survival capacity 
over the migration season.  This hypothesis assumes seasonal changes in fish condition can occur through 
several pathways such as differential loss of energy density, differential pathogen load, and differential 
stress from dam passage between the barged and ROR fish.  A number of studies suggest the possibility 
of fish condition affecting the seasonal pattern in D.  For example, fish energy density in some fish 
decreases over the migration season (Congleton et al. 2005).  ROR migrants subjected to a challenge of 
increased water temperature and cessation of feeding experienced faster mortality than did barged fish, 
and the predicted survival capacity ratio of barged to ROR fish increased over the season and then 
declined at the end of the season (Gosselin 2011).  Pathogen prevalence and pathogen load present a more 
complex picture in this hypothesis.  The hypothesis requires pathogens to increase in ROR fish over the 
migration season.  Overall, we suggest that the pathogen effects are non-linear and are of more 
importance later in the migration season.  Also, note that a fish condition mechanism is required to 
explain D values greater than 1, a property that is deficient in the Fish Size Hypothesis.   
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3.0 Models of D 

No single factor can explain all the temporal, spatial, and species-specific variation in D.  Multiple 
factors contribute, including fish size, fish condition, and seasonally varying environmental conditions in 
the estuary and ocean.  Studies to date have approached the problem at a population level with emphasis 
on fish arrival times and survivals.  The few studies that have considered fish size and fish condition 
suggest their importance as underlying mechanisms in shaping D.  Furthermore, delayed mortality by its 
nature is a differential process that contributes to heterogeneity within and between the groups, whether 
they are identified by barge versus in-river passage, species, or timing.  From this perspective, D is at its 
basis the result of a complex culling process.  Our standard survival methodology works at a population 
level but is inadequate for addressing the complexity of differential mortality.  Sections 3.1 and 3.2  
describe two mathematical approaches that synthesize these multiple factors.  The first approach, 
designated the “Multivariate Regression Model”, relates D to covariates using a multiple linear regression 
technique.  The second approach, designated the “Culling Model”, addresses how culling and intrinsic 
fish condition processes alter the heterogeneity in survival capacity of barged and ROR fish.   

3.1 Multivariate Regression Model 

The basis of this conceptual model of D is that the survival of juvenile salmonids after passing BON 
depends on the state of the environment they experience and their condition.  From the perspective of the 
fish, both factors depend on the type of passage through the hydrosystem (ROR migration or barge 
transportation).  Post-hydrosystem fish condition is determined by the cumulative experiences of the fish, 
from their hatching in tributaries and hatcheries to their migration through the rivers, reservoirs, dams, 
and transport systems.  These cumulative experiences also affect the migration timing, and therefore the 
time the fish exit the hydrosystem and continue their migration down the river, through the estuary, into 
the ocean, and back up through the hydrosystem.  Their passage experience determines the date they exit 
the hydrosystem and so indirectly affects the environment they experience.  Thus, D integrates the 
differences in the multitude of factors fish experience during barge and ROR fish passage. 

Multiple factors can interact in subtle and complex ways, making it extremely difficult to understand 
and identify the causative mechanisms of delayed mortality.  Individual hypotheses have been proposed 
for D, but the accumulated evidence indicates there is no one factor or theory that can adequately express 
the patterns contributing to D.   

To organize the discussion of delayed mortality, we created a comprehensive conceptual model.  This 
model was developed as a proportional hazard model that treats the survival as a baseline survival rate 
and the additive sum of explanatory variables as 0log log ii

S S F= + ∑ .  This is a standard approach for 

characterizing the effects of stressors on survival acting concomitantly within the interval during which 
survival is measured.   

Using a proportional hazards framework, we structured contributions to post-hydrosystem survival by 
first dividing the mortality factors into two categories:  those factors that occur within or before 
hydrosystem passage and those factors that occur after hydrosystem passage and are associated with the 
environmental conditions in specific areas the fish pass through in their life cycle after passing through 
the hydrosystem.  Note that the factors in Eq. (3.1) do not exactly correspond with the 12 factors 
identified in Section 4.0 as contributing to D in this model.  The reason is that we do not have data for all 
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the 12 factors for this analysis.  We therefore designed the analysis using variables that reasonably 
represent factors relating to D.  The survival equation for a passage type j is then 

(3.1)

 
where j refers to either run-of-river (R) or barge (B) passage type.   

In Eq.(3.1), the post-hydrosystem survival of fish passing type j, having entered the hydrosystem on 
day t, depends on seven factors: 

• The first factor, Fyear, is a year effect that does not change over the migration season.  This is 
essentially the catchall for things that we cannot attribute to a specific process or experience in the life 
cycle. 

• The second factor, Fdam, characterizes the latent effect of either dam passage or transportation on 
delayed mortality; this factor is affected by specific passage type and determines when fish exit the 
hydrosystem. 

• The third factor, Fcondition, characterizes the effects of the passage type on fish condition as fish exit the 
hydrosystem; it depends on the condition of the fish entering the hydrosystem and the effect of the 
hydrosystem on their condition as they exit the hydrosystem. 

The remaining four factors characterize mortalities that can be attributed to specific locations along 
their specific migratory path from BON as juveniles to their return to LGR as adults. 

• Friver designates the area from BON to the head of the estuary (rkm 56). 

• Festuary designates the area of the estuary. 

• Focean designates the effect of the ocean and in particular the effect of the ocean during their first few 
months in saltwater. 

• Fhydro designates effects such as straying of adults during upstream migration through the 
hydrosystem.   

The value of D depends on the difference in these factors between ROR fish and transported fish.  We 
express this as follows: 

 ( )( ) exp year dam condition river estuary ocean hydroD x F F F F F F F= ∆ + ∆ + ∆ + ∆ + ∆ + ∆ + ∆  (3.2) 

where differential factors are defined as , ,year year R year BF F F∆ = − , , ,dam dam R dam BF F F∆ = − , etc.  The 
important point here is that D depends on the difference of the factors between the ROR and barge 
passage types. 

( ), , , , , , ,( ) expj year j dam j condition j river j estuary j ocean j hydro jS x F F F F F F F= − − − − − − −

Factors occurring before or 
during hydrosystem passage 

Factors occurring after 
hydrosystem passage 

Post-hydrosystem 
survival 

 



 

3.3 

A regression model was developed from Eq. (3.2) (Anderson et al. 2012).  The full equation 
contained variables for LGR arrival day of year, t, its square and cubic powers t2 and t3, the differential in 
the cumulative heat exposure of ROR and barged fish during migration, the average spill experienced by 
ROR fish, and flows experienced by ROR and barged fish when entering the hydrosystem at LGR and 
exiting the hydrosystem at BON.  Using the Akaike information criterion (AIC) to identify significant 
covariates, the model reduced to the following form: 

 3
0 1 3 4 5 6log ( ) ( ) ( ) ( )LGR BOND t a a h t a t a t a q t a q t= + ∆ + + + +  (3.3) 

where t is the arrival day of fish at Lower Granite Dam, Δh is the differential in heat exposure (travel time 
* average temperature) of barged to transported fish passing through the hydrosystem, and qLGR and qBON 
are flows at LGR and BON experienced by the barged fish.  Figure 3.1 shows a plot of the predicted vs. 
observed weekly D estimates for hatchery spring Chinook collected over the years 1997−2006 as based 
on Eq. 3.3. 

 

 
Figure 3.1. Ratio of Transport to In-River SAR (T:I) for Spring Chinook () (Anderson et al. 2005) and 

Weekly Hatchery Spring Chinook Log D Observed vs. Predicted From Model B. (+) 
indicates data from 2001.  The red × indicates the most influential data point.  Size of 
circles indicates data weighting. 

However, in considering delayed mortality we seek to relate the effect of the variables in one stage on 
the mortality in a following stage.  Proportional hazard models do not mechanistically link the two stages, 
so they are an ad hoc approach to the problem.  The vitality model is a theoretical and mechanistically 
based approach to linking cross-stage effects (Anderson et al. 2008), but this approach has not been 
applied to characterize D and has additional mathematical complexities.  It is discussed in the next 
section. 
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3.2 Culling Model with Dynamic Processes in Heterogeneity Among 
Individuals 

The above discussion of factors with a potential to influence D is based on a standard hazard rate 
model and approximates, in a simplified manner, average contributions of some factors that are thought to 
affect delayed mortality.  However, the hazard rate approach is inadequate for characterizing the change 
in the survival capacity of fish as they move through the hydrosystem and into the ocean.  A better 
approach is to build upon the idea that fish entering the hydrosystem have a distribution of survival 
capacity, i.e., heterogeneity in vitality, and that passage through the hydrosystem then alters the 
distribution so that the survival capacity of the group exiting the hydrosystem is different from its survival 
capacity at hydrosystem entrance.  In short, the experience of fish in hydrosystem passage affects their 
post-hydrosystem survival capacity.  Characterizing heterogeneity in vitality and how it changes with 
passage is central to understanding D.  The issue is somewhat complex and previous attempts to consider 
heterogeneity are limited.  For example, in the 2004 CSS Workshop (Marmorek et al. 2004), a culling 
hypothesis was proposed in which weaker fish destined to die are culled during river passage, while if 
barged, the same weaker fish are culled when released downstream of the hydrosystem.  Thus, in the CSS 
hypothesis, culling simply moves the location at which the weak fish die but does not affect total survival.  
However, it was also hypothesized that passage types differentially stress ROR and barged fish (Budy et 
al. 2002) independent of how many die in the particular passage type.  This differential passage stress 
hypothesis conflicts with the CSS culling hypothesis which assumes that fish survival capacity is not 
affected by passage type.  Hazard rate models are inadequate for distinguishing between the culling that 
kills weak fish without affecting the distribution of survival capacity and passage stress that weakens fish 
so they suffer delayed mortality.  In summary, heterogeneity is inextricably linked to D, so understanding 
the complexities of the processes requires a framework that encompasses both heterogeneity resulting 
from mortality and nonlethal stress while at the same time being sufficiently simple and tractable to be 
applied to data.   

The effect of heterogeneity on the survival capacity of fish has been considered in terms of 
measurable distributions of fish properties (Ginn and Loge 2007) and more abstractly by vitality 
(Anderson 2000; Li and Anderson 2009, Li and Anderson in press).  The methods take different 
approaches but are similar in that they characterize a distribution of survival capacity within a population.  
Here we outline a framework for a new “culling model” that we believe tractably deals with the effects of 
heterogeneity on direct and delayed mortality.   

3.2.1 Derivation 

At the basis of a culling model is the effect of time and passage types on heterogeneity in fish survival 
capacity.  We express heterogeneity among individuals in terms of vitality, which is an abstract measure 
of the survival capacity of an animal (Anderson 2000).  We assume extrinsic mortality occurs when the 
strength of an external random event or challenge, Y, exceeds the vitality of a fish, v (Li and Anderson, in 
press).  These external random events have multiple sources such as blade strike, descaling, and 
embolisms in dam passage; predator encounters; and infection.  The rate of mortality, r,  depends on the 
frequency and magnitude of these external events and can be defined as Pr( ) (1 ( ))r Y v vλ λ= ≥ = − Φ  
where λ is the frequency of the random events and Φ is the cumulative distribution of their intensities, 
i.e., the cumulative probability that a random event is below the vitality level (v).  Assuming that most 
events are small and that the probability of occurrence of large events declines with their magnitude, we 
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represent the distribution of the strength of events by an exponential density function.  Then the 
cumulative distribution function of event strength is /( ) 1 v kv e−Φ = − , where k is a scale parameter 

expressing the shape of the distribution (Figure 3.2, Panel A) and the mortality rate is v kr eλ −= .  
Assuming the mortality of fish is time-dependent and follows the equation dS dt rS= − , then survival is a 
function of time and the representative vitality of a fish over the river segment is a constant.  The survival 
through the segment is a function of the segment travel time (τj) and v: 

 ( ) ( )( , ) exp expv k v k
j j j j jS v e m eτ λ τ − −= − = −  (3.4) 

where jλ  is the frequency of external events in river segment j and mj is the average number of external 

events that a fish encounters over river segment j (Figure 3.2, Panel A).   
 

 
Figure 3.2. Cumulative Frequency Distribution of Events (A) and Survival as Functions of Vitality (B) 

The average survival over river segment j is 

 
0

( ) ( , ) ( , )j j j jS t S v f v t dvτ
∞

= ∫  (3.5) 

where t is the time the fish enters the hydrosystem, jτ is the hydrosystem travel time by passage type j, 

and ( , )jf v t  is the intrinsic vitality distribution over the passage type j through the hydrosystem.  By 
“intrinsic” we imply the vitality distribution prior to any culling within the river segment.  Eq.(3.5) is then 
survival resulting from culling of the fish according to their intrinsic vitality distribution of fish passing 
the hydrosystem through passage type j.  We represent the distribution of intrinsic vitality over passage 
type j with a normal distribution: 

 ( , ) ( ( ), ( ))j j jf v t N v t tσ=  (3.6) 

where ( )jv t  and ( )j tσ are the mean and standard deviation of the distribution.  The parameters in Eq.(3.6) 

represent the mean and variance in the intrinsic vitality over hydrosystem passage and is determined by 
the pre-hydrosystem survival capacity as well as any changes during passage from processes such as 
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disease loading and growth but is not affected by removal of weaker fish through hydrosystem culling.  
An adjustment in the distribution due to culling of weaker fish is made when calculating the post-
hydrosystem vitality as expressed by Eq. (3.9).  In this manner, the intrinsic vitality during passage is an 
average measure of the distribution of vitality over the passage type before any culling of weak 
individuals.  This post-passage adjustment is required to obtain a closed form solution.   

To characterize the vitality distribution of fish exiting the hydrosystem first define the hydrosystem 
exit time as  

 j jt t τ= +  (3.7) 

where jτ  is the hydrosystem travel time via passage type j and can be a function of hydrosystem arrival 

date to account for seasonal differences in passage time of ROR fish.  The vitality distribution when 
exiting the hydrosystem adjusted for both culling during passage and intrinsic changes in vitality due to 
passage through passage type j can be expressed as 

 * ( , )
( , ) ( , )

( )
j j

j j
j

S v
f v t f v t

S t
τ

=  (3.8) 

where the ratio of survivals ( , ) ( )j j jS v S tτ expresses the effect of culling on the intrinsic distribution.  

Assuming the distribution of intrinsic vitality when fish exit the hydrosystem is a normal distribution with 
a mean vitality of *( )jv t  and a standard deviation of *( )j tσ , the distribution of the vitality exiting the 

hydrosystem at time jt becomes  

 ( )* * * ( , )
( , ) ( ), ( )

( )
j j

j j j
j

S v
f v t N v t t

S t
τ

σ=
.
 (3.9) 

Figure 3.3 illustrates the vitality distribution of fish entering the hydrosystem and the distributions of 
fish exiting the hydrosystem as a result of culling alone or from both culling and stress that decrease(s) 
the vitality distribution.   

The post-hydrosystem survival as a function of vitality for a fish entering the hydrosystem at t and 
passing through passage type j is  

 ( )** * *( , ) exp ( )v k
j j jS v t e tλ τ−= −  (3.10) 

where *
jτ is the travel time through the lower river and estuary, *( )j tλ is the frequency of post-hydrosystem 

external events a fish experiences after exiting the hydrosystem referenced to its hydrosystem entrance 
date t, *k is the intensity of external events, and j is the hydrosystem passage type.  The equation allows 
for the frequency of events to change as a function of when fish exit the hydrosystem, but then assumes a 
constant frequency of events when transiting the LRE.   
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Figure 3.3. Post-Hydrosystem Distributions of Vitality Density Under Three Conditions:  1) Initial 

Distribution (, black), 2) Exit Distribution with Culling (− −, red), and 3) Exit Distribution 
with Culling and Stress (⋅⋅⋅⋅, blue) 

The resulting post-hydrosystem survival for passage type j becomes 
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The D is the ratio of post-hydrosystem of barged to ROR fish and is  

 * *
B RD S S=  (3.12) 

which can be expressed as  
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 (3.13) 

where 
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 (3.14) 

and the number of events experienced by the groups in hydrosystem passage ( )jm and post-hydrosystem 

passage * ( )jm t are defined as 
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 * * *

( ) ( ) ( )

( ) ( ) ( )
j j j

j j j

m t t t

m t t t

λ τ

λ τ

=

=
 (3.15) 

where  j  = passage type R = ROR passage, B = barge passage  
 t  = date fish enter the hydrosystem  
  jτ  = hydrosystem transit time via passage type j  

 *
jτ  = post-hydrosystem transit time via passage type j 

 jλ  = frequency of events in hydrosystem by passage type j  

 *
jλ  = frequency of events in estuary by passage type j  

 ( )jv t  = mean intrinsic vitality of fish entering hydrosystem on t and passing by passage type j  

  
*( )jv t  = mean intrinsic vitality of fish exiting hydrosystem that entered on t and passed by 

passage type j 

 ( )j tσ
 = standard deviation of fish intrinsic vitality entering the hydrosystem on t and by passage 

type j 

 
*( )j tσ  = standard deviation of fish intrinsic vitality exiting hydrosystem that entered on t and by 

passage type j 

 k  = strength of ROR and barge fish events in hydrosystem  
 *k  = strength of ROR and barge fish events in estuary. 

3.2.1.1 Characterizing Intrinsic Survival During Passage  

Because of culling, the fish vitality distribution exiting the hydrosystem is modified.  However, the 
distribution can also change independently of hydrosystem mortality because during passage the vitality 
of fish may change by intrinsic processes such as fish growth, cumulative stress, and exposure to 
pathogens.  We express these processes by adjusting the mean and standard deviation of the hydrosystem 
vitality distributions in Eq. (3.14).  In essence, after hydrosystem passage we adjust the vitality 
distribution according to the amount of time the fish spends in the hydrosystem and the conditions of the 
hydrosystem.  We track the differential in ROR and barge passage times through the hydrosystem 
entrance and exit dates.   

Noting that vitality is a one-dimensional measure for survival capacity, we hypothesize that two 
general categories of processes affect survival capacity.  The first category of processes are represented 
by the length hypotheses in Section 2.3.1 and the second category is represented by the fish condition 
hypothesis defined in Section 2.3.3.  Length is a major determinant of survival capacity and to a first 
order, fish length increases at a constant rate during freshwater residence.  For fish condition effects, we 
assume pathogen loading is an important negative survival-capacity factor and we hypothesize the rate of 
increase of pathogens is proportional to time.  Thus, in early stages of pathogen exposure few fish are 
affected, but as time increases the rate of mortality by disease increases.  Such a pattern was observed in 
the net pen challenge studies of Eder et al. (2009b).  The effects of these competing processes on vitality 
can be expressed by the stochastic differential equation  

 x
dv a bx c
dx

ε= − +  (3.16) 
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where x = the time in hydrosystem passage 
 a = a rate of increase of vitality, resulting from growth during hydrosystem passage  
 b = a time-dependent decline in vitality resulting from cumulative pathogen loading 
 c = the intensity of the stochastic variation in vitality rate  
 εx  = is a white noise process to capture the randomness of the system.   

Eq. (3.16) in effect assumes growth increases vitality in a steady linear manner, while the negative 
effect of pathogens is at first small but then increases over time.  The solution of Eq. (3.16) is 

 
0 0 0
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(0)
2

x x x

x

x

x

v x v adx bxdx c dx

bv ax x c dx

ε

ε

= + − +

= + − +

∫ ∫ ∫

∫
 (3.17)  

The expected value of Eq. (3.17) is 

 2( ) 1
2
bv x ax x= + −  (3.18) 

and the variance is  

 2 2 2( ) (0)x c xσ σ= +  (3.19) 

where 2 (0)σ is the standard deviation of the vitality distribution when fish enter the hydrosystem at the 
beginning of the migration season, e.g., 1 April.  The model assumes that the mean intrinsic vitality 
increases linearly in time as fish length increases linearly with time, while vitality decreases as a power 
function of time because of the geometric growth of pathogens.  The net result is that fish vitality initially 
increases in the early portion of the migration season, reaches a peak at critx a b= , and then declines over 
the remainder of the season, while the variance in the distribution increases linearly with time.  Because 
we require positive values of v, the model is only a valid approximation for values of x that give 

( ) ( ) 0.3x v xσ < .  When Eq. (3.18) and (3.19) are used in Eq. (3.13) x = tB or tR.  While the change in 
intrinsic vitality, as used here, is specific to the effects of fish passing through the hydrosystem, the model 
can also characterize the change in vitality of fish prior to entering the hydrosystem and while transiting 
the estuary.   

Overall, with heterogeneity in survival capacity defined by Eq. (3.13), (3.14), (3.18), and (3.19), the 
model first culls ROR fish in the hydrosystem, which alters the vitality distribution of fish exiting the 
hydrosystem.  Next, as the fish enter the LRE, the model adjusts the vitality distributions according to the 
total freshwater residence time.  In this manner, the equation shapes the vitality distribution of fish 
entering the lower river by two sources—culling in the river and estuary and intrinsic processes involving 
growth and pathogen exposure that depend on the duration of the freshwater residence.  The resulting 
vitality distribution, along with the frequency and intensity of challenges, determine the post-hydrosystem 
mortality.   
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3.2.1.2 Simplified Version 

Eq. (3.13) has parameters defining the mortality rates as time-dependent vitality functions and vitality 
distributions.  With this high number of parameters, variations in D can be ascribed to a variety of causes, 
including the differential effects of culling, changes in passage vitality, and differential effects of 
environmental conditions.  The challenge is disentangling these factors to illuminate the essential factors 
contributing to the across-species and across-season variations in D.  This is difficult.  However, the 
equation’s basic properties can be explored by making the following assumptions:  1) barge fish 
experience no mortality (mB = 0), 2) mean barge vitality is one ( 1Bv = ), 3) no fish die during barging  

( 1BS = ), and 4) the coefficient of the variation in the vitality distributions is constant at j jh vσ= .  Then 

D reduces to eight parameters: 
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 (3.20) 

The parameters in Eq. (3.20) characterize factors in the hydrosystem, lower river, estuary, and ocean 
that are hypothesized to affect D.  The parameters k and *k set the intensities of the hydrosystem and 
post-hydrosystem challenge events, which presumably involve predation and dam passage in the 
hydrosystem and avian and piscivorous predation in the estuary and ocean.  The parameter mR is the 
number of random challenge events ROR fish experience in the hydrosystem passage.  The number of 
post-hydrosystem events for barge and ROR fish are *

Bm and *
Rm  respectively.   

3.2.2 Exploring Characteristics of the Culling Model 

In this section we explore the characteristics of the model to illustrate how culling can take several 
forms and generate a variety of post-hydrosystem survival patterns and associated patterns of D.   

Five examples are explored to illustrate the properties of the model.  The first three examples explore 
the sensitivity of D and the individual survival elements to changes in model parameters.  Example I 
assumes that differential hydrosystem stress and culling between barged and ROR fish affects D.  This 
example is relevant to fish condition hypotheses such as that proposed by Budy et al. (2002) that stress in 
ROR fish hydrosystem passage is responsible for D.  Example II assumes that differential predation in the 
post-hydrosystem environment affects D.  This example is relevant to estuary arrival time hypotheses that 
assume the difference in D is the result of ROR and barged fish entering the estuary at different times and 
predator risks.  Example III assumes that the strength of hydrosystem culling of ROR fish affects D.  This 
example is relevant to the culling hypothesis proposed in the Comparative Survival Study Workshop 
report (Marmorek et al. 2004), in which ROR fish are culled in the hydrosystem with resulting greater 
survival in the estuary and ocean.  Example IV assumes seasonally varying hydrosystem and post-
hydrosystem extrinsic events.  This example is relevant to the arrival date hypothesis (Section 2.3.2), 
which assumes D is the result of differences in estuary arrival time of barged and ROR fish.  In the final 
example, V, we illustrate how hypotheses about the effects of fish length (Section 2.3.1) and pathogen-
loading hypotheses (Section 2.3.3) may interact to produce seasonal variations in D. 
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For Examples I-III we set the following parameters of Eq. (3.20) to fixed values:  1Bv = , *
R Rv v= , 

h = 0.2, k = 0.5, k* = 1, mR = 5, *
Rm = 10, *

Bm = 11.  Under these base parameters, 1Rv =  gives realistic 
estimates:  D = 0.62, ROR hydrosystem survival = 0.50, SARbarge = 2.2%, and SARROR = 1.8%.  In each  
example a parameter is varied about its base level to illustrate its effect on D, ROR hydrosystem survival, 
post-hydrosystem survival, and SARs of barged and ROR fish.  Examples IV and V illustrate the effects 
of specific hypotheses and use different parameter values.   

3.2.2.1 Example I:  Differential Passage Stress 

Figure 3.4 illustrates the effect of variation (0.6 to 1.4) in ROR fish vitality on D, passage survival, 
post-hydrosystem survival, and SAR.  Values less than 1 represent conditions where passage weakens 
ROR fish more than barged fish due to factors such as pathogen accumulation and values greater than 
1 represent conditions where passage weakens barged fish more than ROR fish due to factors such as 
increased growth over hydrosystem migration.  Increases in the mean vitality of ROR fish decrease D and 
increase ROR passage and post-hydrosystem survivals.  When ROR fish vitality decreases, D increases as 
a result of decreasing survival in ROR fish.   

 
Figure 3.4.  Patterns of D, Survival, and SAR in Barged (—) and ROR (– –) Fish with Variations in 

ROR Fish Mean Vitality ( )Rv  
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3.2.2.2 Example II:  Differential Post-Hydrosystem Conditions  

The second example varies the number of post-hydrosystem events experienced by ROR fish  
( *

Rm ) while holding events fixed for barged fish.  The base number of barge events is 11, so lower values 
represent lower levels of post-hydrosystem predation challenges in ROR fish than in barged fish, while 
values greater than 11 represent the opposite condition.  As the number of events increases, ROR fish 
post-hydrosystem survival rate declines and D increases (Figure 3.5).  Differential numbers of predators 
could result from seasonal differences in estuary arrival time from the two hydrosystem passage types.   

 
Figure 3.5. Patterns of D, Survival, and SAR in Barged (—) and ROR (– –) Fish with Variations in the 

Number of Post-Hydrosystem Events Encountered by ROR Fish ( *
Rm )  

3.2.2.3 Example III:  ROR Culling Strength  

The third example involves the effect of the strength of the events within hydrosystem.  From a base 
value of 0.5, the example varies k over the range 0.2 to 0.8 (Figure 3.6).  Values of k greater than 0.5 
increase culling in ROR fish with greatest effect in lower vitality fish.  This example demonstrates that 
increases in culling strength decrease the survival of ROR fish through the hydrosystem but increases 
their post-hydrosystem survival.  Thus, the next effect on D is relatively minor.  The consequence of 
Example III is different from the culling hypothesis proposed by Marmorek et al. (2004), which assumed 
that culling of ROR fish would be offset by culling of barged fish in the estuary and ocean, which would 
result in no effect on total survival.  This discrepancy in conclusions illustrates the importance of defining 
how processes act on the heterogeneity among fish.   
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Figure 3.6. Patterns of D, Survival, and SAR in Barged (—) and ROR (– –) Fish with Variations in the 

Strength of Passage Events (k)  

3.2.2.4 Example IV:  Seasonal Pattern  

To illustrate how the model might capture the seasonal patterns in D through the differences in arrival 
timing of barge and ROR fish interacting with seasonal change in the number of predators in the estuary 
we apply seasonal variation in *

Bm and *
Rm only (Figure 3.7).  The resulting effect on D and survival in the 

hydrosystem, the estuary, and the ocean is illustrated in Figure 3.8 where other model parameters are 
* * 1R B R Bv v v v= = = = , k* = 1.2, k = 0.5, and h = 0.2.  The hypothesized seasonal trends in the model 

parameters fit with our qualitative assessment of the patterns in factors affecting D.  The hypothesis 
qualitatively generates the seasonal patterns observed in survival as described in Section 4.2.3.   

 
Figure 3.7. Hypothetical Temporal Change in Number of Estuary Challenge Events for Barged (—) and 

ROR (– –) Fish 
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Figure 3.8.  Seasonal Patterns of D, Survival, and SAR for Barged (—) and ROR (– –) Fish 

3.2.2.5 Example V:  Effect of Growth and Pathogen Loading 

In the final example, we apply Eq. (3.14) and represent changes in vitality from growth and pathogen 
loading according to Eq. (3.18).  The fish size increases over the migration season via a constant growth 
rate, while the rate of pathogen loading increases as a function of date.  The combination of factors causes 
vitality to increase in the early part of the migration season and decrease in the later portion of the season.  
Variability in vitality is important in this example and results in greater culling as the season progresses.  
Assume travel time decreases over the migration season in a manner similar to that observed for spring 
Chinook salmon.  The initial day t = 0 corresponds to Julian day 92 (1 April).  The model parameters are 
as follows: 

 a = 0.04, b = 0.002, c = 0.1, 2 (0)σ = 0.1, k = 0.5, k* = 1.0, mR = 6, mB = 0, *
Rm  = 20, *

Bm  = 20 

Figure 3.9 illustrates that the seasonal variations in fish size and disease loading are sufficient to 
produce the patterns of survival, D and T:I, observed in the system.  D is very low early in the migration 
season, increases to a maximum, and then declines slightly, while T:I increases steadily over the season.  
Survival in barge passage is high early in the season and then declines late in the season because of 
pathogen loading.  ROR fish survival increases and then decreases slightly because of the combined 
effects of fish growth and pathogens.  The vitality of fish exiting the hydrosystem from both passage 
types declines over the migration season.  Noteworthy, this selection of parameters exhibits a unimodal 
post-hydrosystem survival in barged fish (SOcean.B) and steady decline in survival for ROR fish (SOcean.R).  
These general patterns have been observed in studies with ROR spring Chinook salmon (Scheuerell et al. 
2009). 
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Figure 3.9. Seasonal Patterns of D, T:I, ROR Travel Time (TT), Survivals (S) of ROR (R) and Barged 

(B) Fish in the River and Ocean, and Vitalities of Barged (Vital.B) and ROR (Vital.R) Fish 
at Hydrosystem Exit 

3.2.3 Implications of Vitality and Heterogeneity 

Understanding D is ultimately a problem of understanding the differential culling of fish traveling 
through different passage types and how the culling changes over the season.  Our analysis reveals that 
culling depends on both intrinsic factors related directly to the seasonal distribution of vitality in the 
population and extrinsic factors related to the seasonal properties of the environment and in particular the 
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distribution of predators.  Figure 3.7 and Figure 3.8 illustrate how seasonally varying intrinsic and 
extrinsic factors can produce a pattern of seasonally increasing D.  Figure 3.9 illustrates how the seasonal 
pattern in D also can be produced without any change in the extrinsic factors.  That is, the seasonal D can 
be generated with fixed distributions of predators and ocean conditions, while the intrinsic properties of 
barged and ROR fish change over the season.  This result is somewhat surprising because it is generally 
thought that the differential arrival time of ROR and barged fish to the estuary is a major contributor to 
D being < 1; barged fish simply enter the ocean too early before the onset of spring upwelling 
(e.g., Hypothesis H in Figure 4.14).   

The culling model illustrates that no simple explanation will suffice to explain D.  In general, three 
factors we have stated as hypotheses in Section 2.3 interact to produce complex patterns in D across fish 
species and across the migration season.  Two intrinsic factors have competing beneficial and detrimental 
effects.   

• Length Hypothesis (Section 2.3.1):  Growth prior to, and within, the hydrosystem increases fish size, 
which in turn increases fish survival capacity in the estuary and ocean.   

• Conditions Hypothesis (Section 2.3.3):  Accumulated stress from processes such as loss of energy 
density and pathogen exposure decreases survival capacity.  The balance of these factors in ROR and 
barged fish can increase and/or decrease D over the migration season.   

• Arrival Time Hypothesis (2.3.2):  Extrinsic factors involving the interaction of the differential arrival 
timing of ROR and barged fish to the estuary and the seasonally varying conditions of predators and 
forage resource increase and decrease D over the migration season. 

Thus, the value of a vitality-based approach to understanding D is in its ability to rigorously 
characterize intrinsic fish-condition factors and extrinsic environmental factors.  Simply characterizing 
the seasonal pattern of D or SAR is important but insufficient to understand D and development 
management scenarios that involve the conditions of fish and the post-hydrosystem environment.  
Disentangling the factors that contribute to D is critical to the improvement of the transportation program 
because extrinsic factors are difficult to control (e.g., removing ocean predators), while intrinsic factors 
involving the fish can be addressed (e.g., reducing stress and disease in barging).   

While the model itself provides a framework within which to consider the complexities of D, 
unraveling the contributions requires new approaches to measuring fish and in particular the intrinsic 
factors of delayed mortality.  Here vitality offers a way forward because it provides a framework within 
which challenge experiments can be conducted to quantify the differential changes in the seasonal pattern 
of vitality (see Anderson et al. 2008; Li and Anderson 2009; Gosselin 2011).  The idea of a challenge 
experiment is that a relative measure of population vitality can be estimated from the shape of the 
mortality curve of fish exposed to a standardized stressor.  Documenting the seasonal changes in survival 
curves of ROR and barged fish at LGR and BON should provide a clear picture of the seasonal patterns in 
the differential survival capacity of fish as they enter and leave the hydrosystem.  This information is 
sufficient to infer the seasonal patterns of vitality as illustrated in Figure 3.9.   
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4.0 Potential Factors of D 

D is manifested through a complex combination of fish condition and its interaction with 
environmental conditions as described previously in Sections 3.1 and 3.2.  This section provides a 
detailed evaluation of single factors and their interactions.  For each single factor, we organized it into a 
framework, synthesized the associated literature, prioritized it relative to the other factors considered, and 
then proposed future research (Section 4.2).  Then, we summarize the interactions between the single 
factors (Section 4.3), the within-year and across-year patterns (Section 4.4), and the organization and 
prioritization of factors by their degree of importance and extent of uncertainty (Section 4.5).  

4.1 Organizing and Prioritizing Factors 

Our goal is to address each potential factor of D to understand what is already known and what needs 
to be known to support future management actions.  The following sections describe the framework of 
how factors were organized, as well as how they were prioritized to identify research needs that support 
management of the Juvenile Fish Transportation Program.  

4.1.1 The Framework of Factors of D 

Several factors potentially influence the delayed mortality of barged or ROR migrants: 

 pre-hydrosystem conditions 

 arrival time and travel time 

 fish length 

 fish physiology 

 fish disease 

 dam operations 

 barging conditions 

 Lower Columbia River (BON to rkm 56) conditions and predators 

 estuarine (downstream of rkm 56) conditions and predators 

 oceanic conditions 

 straying 

 survival estimation & tagging effects. 

These factors are numbered in the order in which fish encounter them over their life histories, as 
shown in Figure 4.1.  Open circled numbers designate factors that have an environmental source and 
closed circles designate factors related to the state of the fish.  This framework facilitates discussion of the 
potential influences on D. 
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Figure 4.1. Conceptual Model of Locations of the Principal Factors Affecting the Differential Delayed 

Mortality Between Barged and ROR Fish.  LGR represents Lower Granite Dam and BON 
represents Bonneville Dam.  Factor numbering is described in the text of the report.  The 
icon of “Other dams” represents Little Goose Dam, Lower Monumental Dam, Ice Harbor 
Dam, McNary Dam, John Day Dam, and The Dalles Dam. 

4.1.2 Categorizing Factors by Importance and Uncertainty 

Much research has been conducted that directly or indirectly evaluates fish transportation and 
potential factors of D.  That existing information helps us assess the degree of importance and the extent  
of uncertainty for each factor to identify where new or better information is needed to support 
management actions.  The categorization scheme is as follows: 

• Degree of importance to D: 

– A factor with high importance to D has a relatively strong effect on D and provides a mechanistic 
theory.   

– A factor with moderate importance to D shows some level of effect on the relative post-
hydrosystem survival of barged and ROR migrants, but may be overwhelmed by other processes 
and therefore less obviously correlated with SARs or D.   

– A factor with low importance to D has a minimal effect on relative post-hydrosystem survival of 
barged and ROR migrants.   

• Level of uncertainty in the data and conclusions: 

– A factor with limited data gaps and uncertainty shows a consistent and statistically significant 
pattern for barged fish and ROR migrants across years and research studies.   

– A factor with extensive data gaps and uncertainty has yet to be studied or shows inconsistent or 
contradictory patterns of data across years and research studies. 

4.1.3 Priorities for Future Research and Management  

Areas of research that should receive high priority involve factors with a high degree of importance to 
D and also extensive data gaps and uncertainty (Table 4.1).  Factors where the most improvement in 
management decisions is possible are those with a high degree of importance to D but limited data gaps 
and uncertainty.  Other combinations of degree of importance and uncertainty, and their associated level 
of priority to research and management, are described in Table 4.1.  This prioritization scheme is intended 
to focus research efforts on areas where the greatest benefits may be realized. 
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Table 4.1. Prioritizing Factors by Their Degree of Importance in Relation to D and Extent of Data Gaps 
and Uncertainty 

 

 Extent of Data Gaps and Uncertainty 
Limited Extensive 

D
eg

re
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of
 im

po
rta
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to
 D

 High High priority for management 
Low priority for research 

Moderate priority for 
management 

High priority for research 

Moderate Moderate priority for 
management 

Low priority for research 

Moderate priority for 
management 

Moderate priority for 
research 

Low Very low priority for 
management 

Very low priority for research 

Low priority for 
management 

Low priority for research 

4.2 Evaluation of Factors of D 

This section presents each potential factor of D in the order that fish encounter it and provides a 
description of the hypothesized mode of action.  Factors are further categorized by their potential 
importance to management and the level of uncertainty that currently exists for that factor.  Potential 
actions to support better management of each factor are suggested.  

4.2.1 Pre-Hydrosystem Effects  

Hypothesis – Conditions in tributaries and at the hatcheries affect the size, condition, and arrival 
timing of salmonids at the hydrosystem, and thus indirectly affect D.  (See Figure 4.2.)  

 
Figure 4.2. Conceptual Model of How Pre-Hydrosystem Conditions Can Influence Arrival Time and 

Travel Time, Fish Length, and Fish Physiology 

4.2.1.1 Spring/Summer Chinook Salmon 

Many aspects of the pre-hydrosystem conditions can affect D.  These include effects from fish length, 
population densities, water temperature, travel time to and arrival time at the hydrosystem, amount of 
food resources, and sources of origin.  In tributaries upstream of the hydrosystem, summer temperature, 
population density of conspecifics, and the interaction between these two factors can affect the length of 
wild Chinook salmon (Crozier et al. 2010).  At the lowest density, length increases with temperature, but 
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at the highest density, length decreases with temperature.  Significant differences in growth can also occur 
among sites and years (Achord et al. 2007).  The consideration of growth and length is important, because 
larger-sized smolts generally return at higher rates (Zabel and Williams 2002).  The travel time from 
different natal streams to LGR was on average 38 days for wild spring/summer Chinook salmon tagged 
from 1991 to 2003 (Achord et al. 2007).  The timing of migration can be quite variable with the 10th and 
90th percentiles occurring at 20 and 45 days, respectively.  Environmental conditions that relate to the 
passage date of wild spring/summer Chinook salmon include autumn temperature, spring temperature, 
March river flow, and the elevation of the tagging site (Achord et al. 2007).  Early-arriving smolts 
generally show higher SARs than late-arriving ones (Zabel and Williams 2002).  There is an inherent 
tradeoff between earlier migration timing and fish size (i.e., growth and development), both having 
positive effects on survival (Zabel and Williams 2002).  Furthermore, food resources may be limited prior 
to reaching the hydrosystem.  About one-third (25%–38%) of hatchery yearling Chinook salmon passing 
LGR from 1987 to 1991 had empty stomachs, which lead Muir and Coley (1996) to conclude that large 
numbers of hatchery smolts and long residence times could cause high mortality rates.  In contrast, they 
also found that fewer fish had empty stomachs at McNary Dam (MCN; 3%) and BON (5%) in 1991.  The 
most recent example of how pre-hydrosystem conditions can affect survival during and after FCRPS 
passage was detected in a disease challenge study (Dietrich et al. 2011).  Hatchery stock differences 
occurred in the survival of barged spring Chinook salmon from the time they were collected at BON to 
the conclusion of the challenge experiment with Listonella anguillarum.  The authors concluded that the 
history of the smolts prior to entering the FCRPS can affect their health status and survival, particularly in 
barged fish.  Only when fish are healthy does barging potentially provide a beneficial mitigation strategy 
by offsetting adverse health effects associated with ROR passage through the hydropower system.  Other 
studies have determined hatchery stock differences in fish condition and SARs (Congleton et al. 2005; 
Mesa et al. 2008; Tuomikoski et al. 2010), but whether these differences stem from genetic effects, 
environmental influences, and their interactions (including phenotypic effects) is still unclear. 

4.2.1.2 Fall Chinook Salmon 

Pre-hydrosystem water conditions influence subyearling fall Chinook salmon migration timing.  From 
the free-flowing river to the first dam, flow increased the rate of outmigration, while temperature had the 
opposite effect (Connor et al. 2003).  Similarly, Smith et al. (2003) observed that survival was 
significantly correlated with discharge (i.e., flow), water temperature, and water transparency.  They also 
determined that survival decreased throughout the season.  Although these two studies concluded that 
flow affected migration rate and survival rate, Tiffan et al. (2009) determined that migration rate was 
correlated with water velocity but not with flow.  Subyearlings were observed to decrease their migratory 
rate when swimming from the high-velocity and highly turbulent riverine reaches to the low-velocity and 
low-turbulence reservoir reaches.   

4.2.1.3 Steelhead 

Little information was found about the pre-hydrosystem condition of juvenile steelhead prior to 
entering the hydrosystem.  However, a study of external condition of juvenile steelhead tagged at Rock 
Island found 11% in poor condition compared to 68.5% in good condition.  Preliminary analysis of these 
data suggested steelhead in poor condition were more susceptible to avian predation (Roby et al. 2011a).   
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4.2.1.4 Importance to D and Level of Uncertainty 

Medium importance to D and extensive data gaps and uncertainty  

The general factor of pre-hydrosystem conditions was categorized as having moderate importance to 
D because its associated factors include temperature, population density, growth, water flow, velocity, 
and turbulence (Crozier and Zabel 2006; Crozier et al. 2010; Smith et al. 2003; Sykes et al. 2009; Tiffan 
et al. 2009), which in turn affect fish length, fish condition, disease, hydrosystem arrival time, and travel 
time (Table 4.3).  Research in the tributaries is currently focused on parr-to-smolt survival affected by 
factors such as non-indigenous species, population density, and habitat degradation (Achord et al. 2003; 
Achord et al. 2007; Crozier and Zabel 2006; Crozier et al. 2010; Greene and Beechie 2004; Holecek et al. 
2009).  SARs of fish from different hatcheries also vary.  Overall, pre-hydrosystem conditions likely have 
some indirect effects on D, but the specific relationships need to be further resolved.  There are thus 
extensive data gaps and uncertainty.   

4.2.1.5 Future Research Needs 

Determining the conditions of the fish at the time of entry into the FCRPS and the causes of their 
condition is the main research need related to pre-hydrosystem conditions.  However, first establishing 
which fish conditions are associated with SARs and D would help determine which pre-hydrosystem 
conditions to effectively study.  These fish conditions are further described as factors of hydrosystem 
arrival time and travel time, fish length, physiology, and disease below.  Note that determining these 
factors for wild fish may be difficult but in hatcheries many of these factors are readily controllable and 
measurable. 

4.2.2 Hydrosystem Arrival Time and Travel Time  

Hypothesis – Fish arrival timing to the hydrosystem and travel time through the system affect their 
arrival timing to the lower river, estuary, and ocean, and thus influence the environmental conditions and 
predation risk they experience post-hydrosystem.  (See Figure 4.3.) 

The downriver migratory run timing of fish varies; yearling spring/summer Chinook salmon generally 
run from mid-April to mid-June, steelhead from mid-April to late-June, and subyearling fall Chinook 
salmon from early June to mid-August.  Clemens et al. (2009) concluded that a pattern of high-to-low 
survival rate through the lower Columbia River to the ocean occurred across the runs, i.e., spring/summer 
Chinook salmon, steelhead, and fall Chinook salmon, and followed the seasonal pattern of outmigration 
timing and declining river flows. 
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Figure 4.3. Factors Involved with Timing of Fish (Top) Into and Out of the Hydrosystem and Examples 

of the Passage Distributions of Snake River Basin Barged and ROR Spring/Summer 
Chinook Salmon, Steelhead, and Fall Chinook Salmon at BON (Bottom) 

4.2.2.1 Spring/Summer Chinook Salmon 

Hydrosystem passage by ROR migrants generally takes 2 to 4 weeks with travel time being slowest 
early in the season and decreasing throughout the migration season (Muir et al. 2006; Tuomikoski et al. 
2010; Muir and Williams in press).  The travel time of ROR migrants is positively related to fish size 
(Congleton et al. 2005) and water travel time (Tuomikoski et al. 2010).  Scheuerell et al. (2009) 
determined that post-hydrosystem survival for wild yearling Chinook and juvenile steelhead, migrating in 
mid-May was 4 to 50 times higher than those migrating in mid-June.  Thus, the authors suggested that 
increasing the downstream migration rate would help them to arrive at the estuary earlier and increase 
their SARs.  Models with year, day, and day2 as parameters performed better at predicting SARs than 
models with temperature and upwelling.  But there was still a residual effect of temperature after 
controlling for day, particularly in Chinook salmon.  There is also likely a time lag effect of upwelling, 
but matching these daily indices with survival over the short time scale of outmigration period was 
beyond the scope of the study.  The authors discuss other possible environmental and endogenous factors 
that vary seasonally and that may affect SARs.  These include photoperiod, food supply, growth, hormone 
concentrations, and population densities of predators, hatchery fish, and other forage fish species.   

In contrast to ROR migration, barges transport fish through the FCRPS in approximately 36 hours 
(Muir et al. 2006).  Early ROR migrants have higher survival rates than late ROR fish, but barged fish in 
the early season have low SARs from and back to the point of release relative to barged fish late in the 
season (Zabel and Williams 2002; Anderson et al. 2005).  Thus, since 2007, barging has been delayed to 
early May for spring/summer Chinook salmon and steelhead migration.   
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The hydrosystem arrival time and travel time affect the seasonal timing of when barged and ROR fish 
arrive downstream of the hydrosystem, and as a consequence the environmental and ecological conditions 
they experience in the LRE and ocean.  The seasonal pattern is relatively consistent across years:  D 
begins below 1 early in the season, then increases throughout the season, and sometimes rapidly decreases 
to below 1 at the end of the migration season (June) for spring/summer Chinook salmon and steelhead 
(Anderson et al. 2005; NOAA 2010).  In some years, no seasonal change is revealed in multivariate 
models.  The specific interactions that cause the seasonal patterns of D are still unclear.  Factors linked to 
migration timing such as fish condition, upwelling, avian predation, piscivorous fish predation, and 
alternative prey are discussed in sections below. 

4.2.2.2 Fall Chinook Salmon 

Travel time is negatively related to the length of fall Chinook salmon (Connor et al. 2004).  Length 
particularly varies across the two juvenile life histories:  subyearlings or ocean-type fall Chinook salmon 
that migrate to the sea within their first year, and yearling or stream-type fall Chinook salmon that 
residualize in the reservoirs and continue their migration the next spring (Connor et al. 2002, 2005, 2007).  
With few wild fall Chinook salmon (≤ 2%) exhibiting the stream-type life history (Connor et al. 2002), 
the greatest differences in length exist among the hatchery ones.  Travel rates of yearling fall Chinook 
salmon are the fastest, while those for small-sized subyearlings are the slowest.   

4.2.2.3 Steelhead 

The travel time of ROR steelhead is highly correlated with water travel time throughout the season 
(Williams et al. 2005; Tuomikoski et al. 2010).  The day of the year was also correlated with travel time, 
but to a lesser degree than flow.  For a certain range of water velocities, travel rates were lower near dams 
than through reservoirs (Plumb et al. 2006).  Estuary conditions also interact with travel time to affect D. 
These factors are discussed in Section 4.2.8.  

4.2.2.4 Importance to D and Level of Uncertainty 

High importance to D and limited data gaps and uncertainty  

The relatively consistent seasonal patterns of D suggest the factor of arrival time and travel time to be 
of high importance to D and have limited data gaps and uncertainty relative to all the other factors 
considered in this synthesis report (Table 4.3).  Data gaps and uncertainty remain about the underlying 
mechanisms altering arrival timing and travel times to generate those seasonal patterns.  Those underlying 
mechanisms are considered as separate factors below.  Also, seasonal estimates of fall Chinook D are not 
likely possible given that annual estimates have large amounts of uncertainty (Williams et al. 2005; Marsh 
et al. 2010a).  This is a general issue with estimating D for fall Chinook salmon (see Section 2.2.1). 

4.2.2.5 Future Research Needs 

A relatively high degree of importance and a low level of uncertainty make this factor of high priority 
for management but of low priority for research.   
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4.2.3 Fish Length  

Hypothesis – Large-sized fish have higher SARs, therefore factors that affect length differentially on 
transport and ROR fish will affect D.  Combining seasonal changes in fish size and survival rates 
suggests a potentially important mechanism for the seasonal changes in D.  (See Figure 4.4.) 

 

Figure 4.4. Length of Wild Fish Spring/Summer Chinook Passing Bonneville Dam for ROR and Barged 
Fish from Muir et al. (2006).  Superimposed are some observed examples of estuary arrival 
timing patterns of fish from ROR (- - -) and barge passage types ().   

4.2.3.1 Spring/Summer Chinook Salmon 

SARs of spring/summer Chinook salmon were related to the length of hatchery, wild, ROR and 
barged individuals released in 1995 and 1996 (Zabel and Williams 2002).  Furthermore, relative length 
and not mean length or relative condition index was related to survival in a 5-year study across 15 wild 
stocks from their release at Idaho tributaries to LGR (Zabel and Achord 2004).  Predictions showed a 
nearly 60% increase in the length-related selection of fish through to adulthood (Zabel and Achord 2004).  
Possible length-related mechanisms of mortality exist when ecological behaviors are considered.  For 
example, larger fish have an advantage in competition for territories, food resources, and shelter from 
predators.  In a later study, positive relationships between survival and length were again found, but 
negative relationships were also observed, depending on the release group/river segment combination 
observed (Zabel et al. 2005).  Thus, it appears that other length-related mechanisms may affect adult 
return survival. 

Smaller-sized hatchery Chinook salmon consistently had a greater probability of recapture and of 
bypass than larger fish (Zabel et al. 2005).  Another field-based study also found some evidence that 
supports the hypothesis that smaller-sized Chinook salmon have a higher probability of being entrained 
into the bypass system (Congleton et al. 2005).  However, a recent study by Buchanan et al. (2011) did 
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not find evidence of consistent size-selective collection in bypass systems.  Also, this relationship was not 
found in wild Chinook salmon (Zabel et al. 2005; Congleton et al. 2005).   

Seasonal variations in fish length occur.  Spring/summer Chinook salmon arrival length at LGR 
increased over the season, but ROR migrants at BON increased much less across the season (Figure 4.4).  
The ROR fish grew over the migration season (Muir et al. 2006), while barged fish arrived downstream at 
essentially the same size as that at capture upstream.  Size-selective predation was demonstrated in a 
model with regression equations of selectivity among barged and in-river migrating Chinook salmon 
(Muir et al. 2006).  However, recent measurements of fish size at LGR and BON have not shown 
significant growth in ROR migrants (B. Muir, NOAA, personal communication).  Also, a field survey 
failed to find supporting evidence for size-selective predation among N. pikeminnow downstream of 
BON (Mesa et al. 2008).  

Recent research on hatchery and wild yearling Chinook salmon PIT-tagged at Lower Granite Dam 
from 1998 to 2011 show a step-like function between SARs (LGR to BON) and fish lengths at LGR 
(Gregor Passolt, Univ. of Washington, MS Thesis in progress).  Differences occurred between hatchery 
and wild yearling Chinook salmon, as well as between the barged and ROR counterparts.  For each rear 
type and passage type, few juveniles below their respective critical size threshold returned as adults, while 
those above their respective thresholds dominated in the returning adult populations.   

4.2.3.2 Fall Chinook Salmon 

The length of subyearling and yearling fall Chinook salmon is associated with their travel times and 
survival rates.  Among three groups of different sized subyearlings and one group of yearlings, the 
yearlings travelled through the hydrosystem the fastest (Connor et al. 2004).  They had the highest 
survival rates likely due to their large body sizes and short travel times during cool temperatures.  The 
smallest of the three size groups of subyearlings travelled the slowest.  Their survival rate was low 
because they lingered to feed, were susceptible to predators, and were exposed to low flows and high 
temperatures.  Fish scale pattern analysis confirmed that yearlings generally exhibit higher survival rates 
than subyearlings (Connor et al. 2005). 

4.2.3.3 Steelhead 

Smaller-sized hatchery steelhead consistently had a greater probability of recapture and of bypass 
than larger fish (Zabel et al. 2005).  Furthermore, it appears that medium-sized steelhead (190–250 mm) 
have greater Caspian tern predation risk than small (< 169 mm) and large (> 270 mm) as observed on 
Crescent Island in the McNary reservoir (Roby et al. 2008, 2011b).  This relationship was not observed 
on Foundation Island.  

4.2.3.4 Importance to D and Level of Uncertainty 

High importance to D and extensive data gaps and uncertainty  

The relatively strong relationships between fish size and survival make this factor of high importance 
to D (Table 4.3).  This factor is also considered to have extensive uncertainty because how much, where 
and how size-selective mortality occurs is still unclear.  Also, there are inconsistent patterns of size effects 
in relation to bypass routes in spring/summer Chinook salmon and the avian selectivity of moderately 
sized steelhead.   
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4.2.3.5 Future Research Needs 

A high degree of importance and extensive uncertainty make this factor of high priority for 
management and of high priority for research.  For a summarized version of future research needs and 
approaches, please see Table 5.1. 

As more research on critical sizes, growth, and marine survival of salmonid species are conducted 
(Moss et al. 2005, Farley et al. 2007a, b, c, Cross et al. 2009, Clairborne et al. 2011, Duffy and 
Beauchamp 2011), a better understanding of fish size and growth in relation to marine survival arises.  
The use of research on other salmon stocks will help us better understand the length-related processes 
affecting SARs of salmon stocks that pass through the FCRPS.  Here, we first summarize literature 
related to critical sizes and marine survival, and then consider more specific research questions related to 
the salmon stocks that migrate through the FCRPS by barge or ROR passage type. 

Size-selective mortality at ocean entrance (which includes the following few weeks to couple of 
months) can contribute to the heavy mortality that occurs in juvenile salmon following ocean entrance 
(Parker 1968, Pearcy 1992).  Estimates of mortality in the first few weeks after ocean entrance have been 
estimated as 55% to 80% for pink salmon for Prince William Sound hatchery stocks (Parker 1968), 53% 
to 94% for Russian stocks (Karpenko 1998), and 75% in a more recent study for Prince William Sound 
stocks (Willette et al. 2001) (from Moss et al. 2005).  Clairborne et al. (2011) is one of the few studies 
that determined that size at ocean entry can relate to marine survival in some outmigration years (2002 to 
2004) and but not others (2005).  By estimating fish lengths from circulus spacing on fish scales, the 
authors determined that Willamette River yearling Chinook salmon with fork lengths (FL) less than 
150 mm at ocean entry were underrepresented in the number of returning adults.  Also, Mahnken et al. 
(1982) conducted a field-based experimental study and found freshwater critical size effects on early 
marine survival in Columbia River hatchery Coho salmon.  It is important to note that, as Claiborne et al. 
(2011) pointed out, although fish smaller than a critical size threshold are underrepresented in the 
returning adult population, the SARs can still vary by ten times between years because of other factors 
affecting marine survival.  Thus, size-selective mortality can occur, but this does not necessitate a direct 
linear relationship between fish length and absolute values of SARs.  

In addition to a critical size at ocean entrance, a second critical size after the critical period of early 
marine growth has been hypothesized (“critical size, critical period” hypothesis; Beamish and Mahnken 
2001).  The growth of salmonids during the late spring and summer in the marine environment can affect 
their survival in the fall and winter of their first ocean year.  Recent studies examining this critical period 
have determined that larger and faster-growing salmonids, such as Atlantic salmon, Coho salmon, pink 
salmon, sockeye salmon, and Chinook salmon, experience greater first year marine survival than small 
and slower-growing ones (Holtby et al. 1990, Friedland et al. 2000, Beamish et al. 2004, Moss et al. 2005, 
Farley et al. 2007a, b, c, Cross et al. 2009, Duffy and Beauchamp 2011).  In contrast to the first critical 
size hypothesis, this one is primarily based on the physiological effects of growth.  An accumulation of 
energy stores such as lipids would help the juveniles survive the winter when starvation occurs (Farley et 
al. 2007a).  Also, Farley et al. (2007c) found that size-selective mortality did not occur after their first 
year in the ocean.  Examining whether and when these bottlenecks of survival occur help determine 
whether freshwater growth is needed to deter size-selective predation in the early marine environment, 
and whether appropriate release and arrival timings are needed for fish to experience suitable ocean 
conditions and improved early marine growth for overwinter survival.  The two critical size hypotheses 
may be related in that small fish at time of ocean entry cannot compensate for their size during the critical 
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period (Farley et al. 2007a); as well, large fish at the time of ocean entry are better foragers than small 
fish.  Growth-associated hormones such as insulin-like growth factor-1 (IGF-1) have been related to 
SARs (Beckman et al. 1999; Beamish and Mahnken 2001).  Again, other factors such as ocean conditions 
can affect the direct relationship between size and absolute values of marine survival (Holtby et al. 1990).   

In the context of salmon stocks travelling through the FCRPS, we suggest that the size and growth 
rate of these fishes can be controlled to some degree by the type of river passage (i.e., barge or ROR) and 
the time of ocean entrance.  Size at ocean entrance (Clairborne et al. 2011) and growth during the spring, 
and perhaps most importantly in the summer (Farley et al. 2007a, Duffy and Beauchamp 2011), both 
affect first year survival.  Because the effects of critical sizes on marine survival have been determined 
across multiple species of salmonids, additional research on size-related survival differences between 
barged and ROR fish is warranted.  Field surveys in the estuarine, plume, and coastal ocean environments 
would help establish whether or not size-selective predation and energetic depletion occur in these 
environments, but can be logistically challenging.  A possible approach in testing the critical size 
hypothesis is conducting a data analysis of the lengths at BON or in the LRE and SARs of PIT-tagged 
fish.  This could involve determining whether critical threshold lengths are associated with different 
species, runs, and rearing types of salmon throughout the season.  An adventitious analysis of data already 
collected is expected to take only a few years.  Back-calculation from scales and otoliths of barged and 
ROR fish and their length-related SARs is another approach.  If a critical size above which higher 
probability of survival exists, structures and procedures could be developed to collect larger-sized fish for 
transportation.  This would increase D and hence the effectiveness of the transportation program.   

Another, more specific, research question arose during the 2011 Differential Delayed Mortality 
Workshop (see Appendixes D, E, and F):  Is low D (i.e., D < 1) expressed only in small-sized fish and not 
in large-sized fish?  In large fish, survival may be relatively high for both barged and ROR fish, thus 
causing D to equal approximately 1.  Research presented at the workshop by Dr. David Welch suggests 
that this size may be around 130 mm in fish length.  Testing for a critical size would clarify the 
relationship between fish length and D, particularly if there is a biased probability of entrainment of small 
fish into the bypass system and collection for barge transportation.  This leads to a second testable 
question:  Is there a collection bias for smaller fish in the juvenile bypass system?  Several studies have 
investigated this question from adventitious data, but a controlled experimental study may help reduce 
uncertainties.  To address this second question related to size-selective collection in the bypass system, 
one could PIT-tag fish over a range of lengths and release them upstream of a dam.  The relationship 
between fish characteristics and the probability of entrainment into the bypass system could be 
determined.  Taking advantage of upcoming studies that involve acoustic transmitter (AT)-tagged fish is 
also possible.  One challenge is to ensure that the tagged fish are representative of the whole stock being 
evaluated.  A study of this second research question can take several years.  If a size-related collection 
bias exists in the bypass system, a mechanism underlying the procedures of the transportation program 
that contribute to low D is revealed.  Also, corrections in the estimates of D and/or improvements in 
structures and operations could be implemented. 
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4.2.4 Fish Physiology  

Hypothesis 1 – Low levels of smoltification in barged fish increase their travel time in the LRE, and 
consequently their predation risk in the LRE.  

Hypothesis 2 – The viability of ROR migrants is reduced due to the depletion of energetic reserves 
during downstream migration through the hydrosystem.  In contrast, barged fish have a negligible loss of 
energetic reserves during their short travel time through the hydrosystem.    

Hypothesis 3 – Fish barged at high densities experience greater stress than ROR fish and 
consequently reduced survival.  This may be particularly important to Chinook salmon barged with 
steelhead.  

See related passage types and conceptual models in Figure 4.5. 

 
Figure 4.5. Factors Involved With Physiological Effects on D (Top).  Conceptual Models of Fish Level 

of Smoltification (Left) and Energetic Reserves as a Function of BON Arrival Day and 
Travel Time for ROR and Barged Fish (Right) 

4.2.4.1 Smoltification (Hypothesis -1) 

Spring/Summer Chinook Salmon 

In a controlled laboratory experiment, Price and Schreck (2003) determined that stress decreases 
saltwater preference in fully smolted Chinook salmon.  After a low level of stress (2-minute chase with 
dipnet), 69% of Chinook smolts and 95% of control fish preferred saltwater.  After a high level of stress 
(dipnetted and confined in 21-L bucket for 15 minutes), 20% of Chinook smolts and 100% of control fish 
preferred saltwater.  When chased by an avian model, Chinook smolts moved from freshwater to 
saltwater, and after 1 hour, 26% of them remained in saltwater.  Thus, stressed fish, and especially those 
that have not fully smolted by the time they reach the LRE, likely have a strong preference for the 
freshwater near the water surface and become more susceptible to avian predation.  This behavior was 
hypothesized by Schreck et al. (2006).   
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Hatchery spring/summer Chinook salmon have shown low gill Na+/K+–adenosine triphosphatase 
(ATPase) activity, an indicator of smoltification, in late April, but high gill Na+/K+–ATPase activity after 
early May (Congleton et al. 2000).  Wild spring/summer Chinook salmon had high gill Na+/ K+–ATPase 
activity throughout the season.  In 2008, hatchery spring/summer Chinook salmon collected in mid-May 
showed the highest levels of gill Na+/K+–ATPase among ROR migrants at JDA and BON, followed by 
ROR fish at MCN, barged fish at LGR prior to transportation, and fish collected at hatcheries (Eder et al. 
2009b).  As the season progressed, the ATPase activity of barged fish increased, particularly in mid-May.  
The ATPase activity of ROR fish also increased throughout the season (May), but dropped at the very 
end of the season (early June).  In a different study conducted from mid-April to late-May of 2006, 
Na+/K+–ATPase activity was approximately 3–4 μmol P h-1 mg protein-1 at the hatcheries, and 
approximately 5–10 μmol P h-1 mg protein-1 in barged and ROR fish (Mesa et al. 2008).  Thus, seasonal 
patterns of ATPase activity and the differences between barged and ROR fish can be less pronounced in 
some years than in others.  If the level of smoltification influences where fish occur in the water column 
and consequently their exposure to predators, the seasonal changes in smoltification and differential 
between barged and ROR fish can contribute to the seasonal increase in D and seasonal averages of D of 
less than 1.   

Fall Chinook Salmon 

The percentage of fish selecting saltwater was not significantly different between barged and 
ROR fish in saltwater preference tests (Schreck et al. 2005).  This study suggests that the level of 
smoltification is likely not an influencing factor of D in fall Chinook salmon.  However, Yanke 
(2006) observed that gill Na+, K+–ATPase activity was highest at 16°C, followed by 20°C, and then 
24°C.  Thus, there may be temperature-related (seasonal) effects on smoltification. 

Steelhead 

The levels of gill Na+/K+–ATPase activity were low among barged steelhead in early May, but 
increased significantly by mid-May, while ROR steelhead had high levels of this indicator of 
osmoregulatory ability throughout the season (Schreck et al. 2005).  However, barged and ROR steelhead 
both did not avoid saltwater during preference experiments, and they had similar osmoregulatory ability 
during the first 2 weeks of saltwater entry.   

Gill Na+/K+–ATPase activity in hatchery and wild steelhead was low in early May, but remained high 
in mid-May and thereafter (Congleton et al. 2000).  Hatchery steelhead sometimes had lower gill Na+/K+–
ATPase activity than wild fish only early in the season (1995) and in other years throughout the season 
(1994 and 1996).   

4.2.4.2 Depletion of Energetic Reserves (Hypothesis -2) 

Spring/Summer Chinook Salmon 

Lipid reserves of ROR hatchery spring/summer Chinook salmon significantly decreased throughout 
the season as they migrated through the hydropower system (Congleton et al. 2005).  Lipid reserves of 
ROR fish at BON reached a low threshold.  Barged fish had a negligible loss of energetic reserves.  At 
LGR, hatchery fish had more than twice the amount of lipid reserves than wild fish, but at BON the lipid 
reserves of hatchery fish decreased to the levels of wild fish.  After lipid depletion, protein reserves also 
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decreased throughout the season.  Growth did not compensate for loss of lipids and protein.  Times to 
fatigue during sprint swimming tests were generally greater for fish collected at LGR (higher lipid 
concentrations) than at BON (lower lipid concentrations) (Fryer 2008).   

Steelhead 

No estimates of energetic reserves for barged and ROR steelhead have been determined. 

Fall Chinook Salmon and Steelhead 

Reduced growth, plasma protein levels, plasma cholesterol, and plasma alkaline phosphatase 
(associated with lower food consumption or conversion rates) occurred in subyearling hatchery fall 
Chinook salmon after a few to several weeks in treatment conditions at 24°C compared to those at 16°C 
and 20°C (Yanke 2006).  At high water temperatures, the subyearling fall Chinook salmon likely 
mobilized energetic reserves in response to sublethal thermal stress and could not replenish the reserves.  
Increased permeability of tissues and increased heat shock (stress) proteins were also observed and could 
contribute to the stress experienced by the fish.  However, increased plasma cortisol was only detected at 
28°C (compared to the 16°C, 20°C and 24°C treatments) after two weeks, and preceded complete 
mortality of these fish.  Survival to 42 days was not affected in treatment groups at 24°C.  Other studies 
have found decreased survival in subyearling fall Chinook salmon to the tailrace of Lower Granite Dam 
as temperatures increased from 15°C to 22°C (Connor et al. 2003, Smith et al. 2003).  Subyearling fall 
Chinook have been hypothesized to use thermal refuge provided by summer flow augmentation in order 
to continue to grow (Connor et al. 2005).  Local temperatures experienced by juvenile, radio-tagged fall 
Chinook salmon have been observed between 18°C and 22°C in the Little Goose reservoir during the 
summer (Tiffan et al. 2003).  Thus, differences in water temperatures experienced by barged and ROR 
juvenile fall Chinook salmon and consequently their growth, physiological condition, and survival are 
possible.  However, whether and how these differences affect their post-BON survival are still unclear.  
Differences in temperatures experienced between barged and ROR fall Chinook would first need to be 
ascertained.  

4.2.4.3 Stress from Fish Barging Densities (Hypothesis -3) 

Spring/Summer Chinook Salmon 

Stress increased in barged Chinook salmon early to mid-May when loading densities were the highest 
throughout the season, as indicated by increased plasma cortisol and glucose concentrations and 
decreased plasma chloride concentrations (Congleton et al. 2000).  The stress indices were at lower 
concentrations in the early and late season.  Cortisol concentrations were higher in the wild fish than the 
hatchery fish.  Furthermore, cortisol concentrations were relatively low in Chinook salmon during 
transport from LGR to BON early and late in the season, but not mid-season when steelhead densities 
were highest.  Similarly, in later studies, higher levels of cortisol were detected in wild Chinook barged 
with steelhead at high densities than at medium or low densities (Congleton et al. 2001, 2003).  Generally, 
a minimal stress response is elicited in barged wild Chinook at steelhead densities < 35 g/L (Congleton et 
al. 2005).  Kelsey et al. (2002) observed spring/summer Chinook salmon to have higher concentrations of 
cortisol, move less, dart less, and be attacked 16 times more often when held with steelhead than without.  
However, positive correlations were determined between cortisol levels and SARs.  Wagner et al. (2004), 
using SARs and barge-loading data for groups of Chinook salmon transported in 1995, 1998, and 1999, 
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failed to confirm a relationship between Chinook salmon survival and steelhead density.  Thus, cortisol 
levels may be an indicator of acute stress, but do not necessarily indicate a stress response that is 
associated with survival because it is overwhelmed by other processes.  Furthermore, increased 
concentrations of plasma cortisol may be due to the barge experience or smoltification (Congleton et al. 
2003).  However, a recent study with laboratory holding experiments has shown higher rates of post-
hydrosystem mortality among Chinook salmon barged with steelhead than without (Sandford et al., pre-
submission).  

Furthermore, in wild Chinook salmon, increases in oxidative stress (lipid peroxidation) and decreases 
in the antioxidant vitamin E were observed throughout the season (Welker and Congleton 2009).  These 
conditions may be related to seasonal temperature increases or smoltification.  They were unrelated to 
patterns of plasma cortisol and glucose.   

Fall Chinook Salmon  

The effects of loading densities on post-hydrosystem survival in Fall Chinook have yet to be studied. 

Steelhead 

Steelhead are generally not as stressed as spring/summer Chinook salmon during barge transportation 
as indicated by cortisol concentrations observed in 1994 and 1995 (Congleton et al. 2000).  Cortisol 
concentrations of steelhead were not correlated with their loading densities.  Also, cortisol concentrations 
were lower in wild steelhead than hatchery steelhead.  

4.2.4.4 Importance to D and Level of Uncertainty 

Moderate importance to D with extensive data gaps and uncertainty  

Although physiological measurements, such as plasma cortisol, Na+/K+-ATPase, and lipid reserves, 
are relatively easy to collect and useful for exploratory research, much uncertainty lies in their 
relationship to D.  This is partly due to 1) the different time scales relevant to different types of stress, 
2) the indirect nature of physiological indices, and 3) the high variability in the data.  Signals may 
represent acute stress (e.g., barge loading; Congleton et al. 2000, 2003), chronic stress (e.g., density-
dependent effects in barges), or cumulative effects from multiple acute stressors experienced during 
hydrosystem passage.  Because of the indirect nature of these indices, determination of causal factors can 
be challenging.  Overall, the diversity of responses shows that complex interactions can occur between 
environmental conditions, physiological responses, and survival rates. 

4.2.4.5 Future Research Needs 

A moderate degree of importance and extensive uncertainty make this factor of moderate priority for 
management and for research.  For a summarized version of future research needs and approaches, please 
see Table 5.1. 

In general, high variability and confounding patterns among research studies and among years could 
be alleviated by composites of multiple indices.  Wagner and Congleton (2004) analyzed the covariation 
of blood analytes and showed that composite variables may be more reliable for interpretation than 
individual variables.  This would help identify whether significant patterns exist and potentially produce 
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more convincing results.  More research in the form of controlled experiments could help determine 
causal factors and complement field research surveys and monitoring programs.  A few examples of these 
are studies by Price and Schreck (2003), which established that stress decreases saltwater preference 
among smolts, and Dietrich et al. (2010), which identified fish densities and flow rates that produced 
minimal rates of disease transmission. Even given a moderate priority for stand-alone physiological 
studies, understanding the physiology of an animal being studied for survival and delayed mortality could 
be very important for understanding the physiological differences between low and high SAR cohorts.  It 
would be beneficial to develop rapid, near real-time samples of physiological condition indices that can 
be analyzed as variables in survival models and help clarify patterns in D. 

More specifically, continued research on the relationship between the degree of smoltification, 
energetic reserves, stress, physiological indices and D can help clarify patterns (particularly in the LRE) 
from previous studies that have covered a few years of data.  Smoltification might be an important 
consideration for when and where to collect fish for transportation, as well as where to release them 
downstream.  One approach is to develop a monitoring program to record the degree of smoltification at 
LGR, Lower Monumental Dam (LMN) or MCN, BON, and the LRE (via mobile Separation by Code 
[SbyC]) across the season.  Fish collected at BON and in the LRE could also be tested in challenge 
studies that include predation, increased temperature, or disease.  Together, this information would be 
useful to work out any discrepancies between indices of smoltification such as gill Na+/K+-ATPase levels 
and saltwater preference tests, as well as quantify the effects of energetic depletion on behavior and 
homeostasis of physiological attributes.  Challenge studies in a laboratory or field setting can complement 
PIT-tag surveys of SARs, especially for fall Chinook salmon, which require extensive tagging to obtain 
reliable SARs.  Research on physiology factors of D is expected to take several years to possibly decades, 
depending on the type of study and monitoring program.   

To date, relatively little information about the relationship between fish condition and the probability 
of entrainment into the bypass system has been determined (Buchanan et al. 2011).  A controlled study 
could be conducted by releasing tagged fish with a wide range of fish conditions and tracking which fish 
enter through the bypass system.  This would help test whether fish in poor condition swim higher in the 
water column and have a greater probability of being entrained into the bypass system (where they can be 
collected for barge transportation). 

Substantial variation can occur in indices of fish condition, thus making it difficult to relate to SARs 
and D.  Again, composite variables may help alleviate this challenge (Wagner and Congleton 2004). 

4.2.5 Disease  

Hypothesis – Delayed mortality of barged and ROR migrants is affected by disease susceptibility, 
which is considered a measure of overall fish health.  Mortality from some pathogens is greater in 
freshwater environments, so differences in LRE travel times among groups can affect D.  (See 
Figure 4.6.) 
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Figure 4.6. Survival in Net Pens of Hatchery Spring/Summer Chinook Salmon Collected After ROR (In-

River) Migration or and Barge Transportation and Hatchery Reference Fish that Did Not 
Pass Through the Hydrosystem.  Sand Island (a) is a seawater-influenced environment and 
Tongue Point (b) is in a freshwater environment.  (Reproduced from Eder et al. 2009b.) 

Spring/Summer Chinook Salmon 

In challenge experiments with pathogen load (colony-forming units/mL) controlled in a laboratory, 
barged fish have been observed to survive better than ROR fish (Arkoosh et al. 2006).  However, overall 
mortalities that include mortalities prior to and during challenge experiments have also been observed to 
show the opposite pattern (Dietrich et al. 2011).  These contrasting patterns may be due to annual 
differences in the conditions of the fish in the pre-hydrosystem environments.  In the field, approximately 
a dozen types of bacterial, viral, and fungal pathogens have been examined histopathologically and 
genetically for barged and ROR migrants (Dietrich et al. 2008; Mesa et al. 2008; Eder et al. 2009a, b; Van 
Gaest et al. 2011).  Combinations of pathogens were often detected in single individuals, and the majority 
(85%) of mortalities in the net pen challenges were due to disease.  Pathogen prevalence was generally 
greater among barged fish than ROR migrants immediately after hydrosystem passage in the pathogen 
prevalence surveys (Dietrich et al. 2008; Mesa et al. 2008; Eder et al. 2009b; Van Gaest et al. 2011).  
Mortalities during the net pen holding studies generally showed mildly greater mortalities among barged 
fish than ROR fish within the first 10 days, but overall greater mortalities in ROR migrants than barged 
fish by the conclusion of the 28-day experiments (Dietrich et al. 2008; Eder et al. 2009a, b).  Across the 
season, mortalities of barged fish decreased while those of ROR migrants increased.  Furthermore, net 
pen holding experiments at the estuarine site showed low mortality rates compared to the freshwater sites.  
The authors speculated that the slow travel rate of barged fish may make them more susceptible to disease 
because they would spend more time in the freshwater environment than ROR migrants.   

Fish density and water-exchange rates on barges were tested to determine conditions that minimized 
pathogen transmission among spring/summer Chinook salmon (Dietrich et al. 2010).  Low fish density 
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(6 g/L) and high water-exchange rates (5.7 exchanges/h) were most conducive to limiting pathogen 
transmission.  The authors found that low fish densities and high water-exchange rates minimized 
pathogen transmission among fish even at exposure times well beyond the few days that fish would 
remain in raceways and barges during transportation (Dietrich et al. 2010).   

Fall Chinook Salmon and Steelhead 

Information about the influence of disease on the SARs of juvenile fall Chinook salmon and steelhead 
during and after hydropower system passage has yet to be studied.  Rates of disease are likely high among 
fall Chinook salmon because of warm temperatures during their outmigration.   

4.2.5.2 Importance to D and Level of Uncertainty 

Moderate importance to D and extensive data gaps and uncertainty  

Pathogens appear to be prevalent in the system, but patterns vary across species of pathogens, 
locations, seasons, years, and studies.  Pathogen prevalence of barged fish is generally greater than that of 
ROR migrants immediately post-hydrosystem (Van Gaest et al. 2011).  However, laboratory challenge 
experiments and net pen holding experiments have shown higher (Dietrich et al. 2007, 2008, 2011; Eder 
et al. 2009b) and lower (Arkoosh et al. 2006; Dietrich et al. 2007, 2008, 2011; Eder et al. 2009b) 
mortality rates among barged fish when compared to ROR migrants.  It is important to understand the 
experimental setting and time scale when interpreting the mortality patterns.  Also, estimates of pathogen 
prevalence (apparent prevalence) may be biased by pathogen-associated mortality experienced by ROR 
migrants during hydrosystem transit.  Extrapolation of net pen results to conditions experienced by fish in 
the river and estuary may be difficult because animal confinement dramatically alters the host-pathogen 
relationship and opportunities for pathogen exposure.  Overall, disease appears to play a role in the 
patterns of D, but complex interactions between the host, pathogen, and the environment as well as the 
continuum of “Susceptible”-“Exposed”-“Infected”-“Recovered/Exposed” conditions of the host elicit 
relatively extensive data gaps and uncertainty related to this factor.  

4.2.5.3 Future Research Needs 

A moderate degree of importance and extensive  uncertainty make this factor of moderate priority for 
management and for research.  For a summarized version of future research needs and approaches, please 
see Table 5.1. 

Validated tools are now available to sample pathogens non-lethally and assess both pathogen 
prevalence and pathogen load (Badil et al. 2011).  Pathogen prevalence is not a marker of “fish health” 
but of pathogen exposure; measurements of pathogen load are also needed to make inferences about 
possible pathogen impacts on fish health.  A number of additional fish health biomarkers have been 
reported for R. salmoninarum and infectious hematopoietic necrosis virus (IHNV) (Metzger et al. 2010 
and Purcell et al. 2010), which could collectively provide a better indicator of health or disease status.  
Future studies using non-lethal sampling approaches may help to resolve whether pathogens are major or 
minor drivers of D.  Additional research could reveal seasonal and annual patterns, and potentially modify 
the relative ranking of importance for this factor.  Continued research of pathogen transmission in barges 
as a follow-up to the Dietrich et al. (2010) laboratory study would also be valuable.   
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If pathogens do differentially affect post-BON survival of barged fish and ROR migrants, procedures 
could be developed to minimize the collection of diseased fish and/or reduce pathogen transmission 
within barges.  Barge conditions that minimize pathogen transmission have been determined (Dietrich et 
al. 2010) and could be implemented.  Pathogen controls could be developed if pathogens were determined 
to be a major contributor to low SARs.  Longitudinal field studies could be conducted to measure 
pathogen prevalence and pathogen load of independent but parallel groups of barged fish and their ROR 
counterparts at LGR, BON, and in the LRE throughout the season.  This type of study could take several 
years to a decade, depending on the scope of the study or monitoring program.  Pathogen prevalence can 
vary seasonally, annually, spatially, and across pathogen species, thus making it challenging to determine 
the effects of pathogens on SARs or D.  However, tools are available for determining associations 
between pathogens and D (see Appendix D and Appendix Section E.1.3; Van Gaest et al. 2011). 

4.2.6 Dam Operations ⑤ 

Hypothesis 1 – Passage through the turbine and bypass routes affect ROR fish through a form of 
cumulative stress and delayed mortality, and hence affect D.   

Hypothesis 2 – The percent of spill affects the proportion of fish transported, the survival of ROR fish, 
and hence D.   

See turbine and bypass routes related to cumulative stress (Hypothesis 1) and transportation passage 
vs. spill route (Hypothesis 2) in Figure 4.7. 

 
Figure 4.7.  Spill Operations and Turbine Efficiency Affect Fish Passage Routing and Survival 

4.2.6.1 Cumulative Stress from Different Passage Routes (Hypothesis ⑤-1) 

Spring/Summer Chinook Salmon  

Survival is greatest through the spill bays, followed by the bypass system, and then the turbines (Muir 
et al. 2001).  However, more recent studies would indicate this may not always be the case (Ploskey et al. 
2011).  Ferguson et al. (2006) presented evidence that fish passing through turbines running outside the 
range of peak efficiency produced a form of delayed mortality.  With MCN turbines running within 1% of 
peak efficiency, survival was 0.87 at 14 km downstream of the dam and 0.86 at 46 km downstream of the 
dam.  Outside the 1% peak efficiency envelope, survivals were 0.86 at 14 km and 0.81 at 46 km.  The 
decreased survival associated with passing through turbines outside the peak efficiency range was likely 
due to the disruption of the fish's sensory system and increased vulnerability to predators in the tailrace.  
In a more recent study, survival rates were examined 1 h and 48 h after turbine passage at five different 
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efficiencies (Normandeau Associates, Inc. et al. 2008).  Lower survival was observed after 48 h than after 
1 h when the turbine efficiencies during fish passage were at the lower 1%, intermediate, and upper 1% of 
turbine efficiencies.  No difference between survival over 1 and 48 h was detected at peak and maximum 
efficiencies.  Thus, cumulative stress from turbine passage appears to decrease survival to some degree.  
However, the effects of cumulative stress from turbine passage on SARs and D are largely unknown.  
Moreover, recent turbine survival research suggests that survival post turbine passage is likely more 
related to hydraulic conditions in the trailrace of the dam than direct injury caused by the turbine runner.  
Hydraulic conditions in the tailrace vary considerably as units are run within and outside of the 1% best 
operating turbine efficiency range.  These hydraulic conditions directly relate to tailrace egress times of 
migrating salmon and steelhead and the distribution of piscivorous fish in the tailrace. 

However, the analysis in Ferguson et al. (2006) did not account for tag bias.  Recent studies by PNNL 
(Brown et al 2009; Carlson et al. 2010) indicate a significant tag bias associated with the exposure of 
internally tagged fish to turbine pressures.  The study shows juvenile salmonids surgically implanted with 
telemetry tags have a much higher risk of mortal injury than non-tagged fish when exposed to simulated 
turbine pressures.  The disparity in mortal injury increased with increased tag burden.  The increased 
mortality due to tag burden would also agree with finding in Ferguson et al. (2006) that there was “a trend 
of higher mortality in smaller fish than larger fish” at the 12,000 cfs discharge.  Ferguson et al. (2006) 
attributed the difference to turbulence affecting the smaller fish, but it is more likely due to the higher tag 
burden borne by the smaller fish.  The effects of the tag bias associated with exposure to turbine pressures 
likely contribute to increased delayed mortality, since death during the PNNL studies was not always 
immediate to the tagged fish sustaining mortal injury.   

Moreover, recent turbine survival research suggests that survival post turbine passage may be 
significantly influenced by the tailrace hydraulic conditions, and less associated with direct injury 
sustained during turbine passage.  Hydraulic conditions in the tailrace vary considerably and are 
dependent upon both the operation of the individual turbine unit as well as the operation of the 
powerhouse and spillway.  These hydraulic conditions directly relate to tailrace egress times of migrating 
salmon (and steelhead) and the distribution of piscivorous fish in the tailrace. 

Evidence has been found to suggest that undetected fish experience better in-river passage conditions 
than fish detected in the bypass system and returned to the river.  Survival of Chinook salmon that have 
been bypassed at least once generally have lower SARs than fish that have never been detected 
(Tuomikoski et al. 2010; Buchanan et al. 2011) and are assumed to have passed via the spill route for the 
most part.  Tuomikoski et al. (2010) concluded from their analyses of fish PIT-tagged and released from 
1998–2009 that post-BON SARs of yearling Chinook were reduced by 10% for each bypass passage 
experienced.  On average, non-bypassed spring/summer Chinook salmon averaged 52% higher SARs than 
those that were bypassed one or more times.  Similarly, Buchanan et al. (2011) found the SARs of 
spring/summer Chinook salmon declined further with multiple bypass events.  Furthermore, differences 
in the perceived bypass effect occurred across dams.  It is possible that the characteristics that result in 
them avoiding entering bypass systems, such as the size (Zabel et al. 2005), condition, and health of the 
fish, may confer a survival benefit.  However, Buchanan et al. (2011) found no consistent evidence of 
bypass selectivity for smaller fish.  Ham et al. (2009) also did not detect significant bypass effects.   

In addition, for fish entering the bypass system, transportation in barges has generally resulted in 
higher adult returns than for hatchery spring/summer Chinook salmon returned back to the river.  The 
SARs of spring/summer Chinook salmon and steelhead from 1990 to 1997 were highest for those 
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transported from LGR and Little Goose Dam (LGS) (Sandford and Smith 2002).  These rates were only 
slightly higher than those for undetected fish.  Recent analysis of SAR data (1996–2006) (Buchanan et al. 
2011) identified more subtle effects of passage routes on delayed mortality.  The analysis did not resolve 
the magnitude of effects but did suggest that certain passage routes were likely to result in higher levels of 
post-hydrosystem mortality than what was observed on the average.  Adult returns for spring/summer 
Chinook salmon that were bypassed at LGR and then transported from LGS were lower than the 
expected rates.  

Fall Chinook Salmon  

No information about fall Chinook salmon delayed mortality after dam passage through different 
routes was found.   

Steelhead  

Generally, survival of steelhead was highest through the spill bays, lower in the bypass system, and 
lowest through the turbine route (Muir et al. 2001).  The Buchanan et al. (2011) study suggested the 
decline in SAR with number of dam bypass detections observed in Chinook also was evident in steelhead.  
Steelhead that experienced one bypass event showed no noticeable effects on SARs, but two or more 
bypass events did decrease SARs (Buchanan et al. 2011).  Tuomikoski et al. (2010) determined that a 
decline of 6% in post-BON SARs occurred for steelhead per bypass event at Snake River dams, and 22% 
per bypass event at Columbia River dams.  Non-bypassed steelhead averaged 91% higher SARs than 
those bypassed at least once.   

4.2.6.2 Relative Effects of Spill-Transport (Hypothesis ⑤-2) 

Spring/Summer Chinook Salmon and Steelhead 

The balance between fish transportation and spill can affect the number of adult returns (ISAB 2008, 
2010; DeHart 2010; NOAA 2010).  Much of the research and discussion about the relative effects of spill 
and transport have primarily focused on T:I and to a lesser extent D.  Assuming that spill increases in-
river survival, it decreases the relative benefit of transportation.  In years of high transport and low/no 
spill, such as 2001, 2004, and 2005, the relative benefit of transporting fish is enhanced by the low 
survival of ROR fish likely due to increased delay at dams with low spill, longer travel times with low 
flow, and higher predation rates.  In years of low transport and high spill, the opposite scenario develops.  
The relative benefit of transportation decreases due to the increased survival rates of ROR fish.  There are 
various other spill-transport operations than these two extremes, and much uncertainty still remains with 
regard to the effects of these other scenarios on SARs, T:I, and D.  Since 2006, a mixed spill-transport 
program has been implemented.  Also, a staggered schedule of transportation starting with LGR, LGS, 
and then  LMN has been applied.   

Various scenarios of spill-transport operations have been simulated in the Comprehensive Passage 
(COMPASS) model (Zabel et al. 2008b).  Sensitivity analyses revealed that hatchery spring/summer 
Chinook salmon were more sensitive to spill, while steelhead were more sensitive to flow in the 
simulations.  Generally, as the proportion of spill increased from 0% to 80%, overall dam survival 
increased from approximately 54% to 69% for Chinook salmon and from approximately 58% to 72% for 
steelhead.  However, differences among dams existed, with BON being the least sensitive and John Day 
Dam (JDA) being the most sensitive to changes in proportion spill.  As flow in the Columbia River 
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increased from about 130 to 450 kcfs, the median travel time from the LGR forebay to the BON tailrace 
decreased exponentially from 45 to 13 days for Chinook salmon, and from approximately 35 to 10 days 
for steelhead.  A change from 0% to 75% spill decreased the median travel time of steelhead by several 
days, but not for spring/summer Chinook salmon.  Furthermore, the absence (scenario 1) or presence 
(scenario 2) of spill at LGR, LGS, and LMN when barging begins, affects adult return rates.  Simulation 
results indicated that the seasonal proportion of maximum adult return rates (maximum across scenarios 
1 and 2) of spring/summer Chinook salmon and steelhead is most affected during low flow years, and 
least affected during high flow years.  Spill also dampens the seasonal variability in both species.  For 
example, without spill in a low flow year, the proportion of maximum adult return rate of spring/summer 
Chinook salmon decreases from 0.95 to 0.45 from March 24 to July 1, with a peak around May 1.  
Whereas, with 75% spill at the transport dams, the proportion of maximum adult return rate remains 
around 0.65.  Likewise, in steelhead, with 0% spill in a low flow year, this proportion decreases from 1.0 
to about 0.1; whereas, with 75% spill at the transport dams, the proportion changes slightly from about 
0.15 to 0.1.  In the model, as in the real world, the proportion of spill strongly influenced the proportion of 
fish transported.   

Fall Chinook Salmon 

Estimates of survival are difficult to determine because of limited sample sizes and the concurrent 
migration and rearing behaviors among different fall Chinook salmon during passage before, during, and 
after the hydrosystem (Williams et al. 2005; Ledgerwood et al. 2007; Marsh et al. 2010a).  In 2005, 
increased spill and limited transportation were used in an effort to help fall Chinook salmon passage 
through the hydrosystem (Ledgerwood et al. 2007).  The effects of this management strategy on D have 
yet to be ascertained.   

4.2.6.3 Importance to D and Level of Uncertainty 

High importance to D and extensive data gaps and uncertainty  

Cumulative experiences from different passage routes and the balance between spill and transport can 
have a relatively strong effect on D.  However, data gaps exist for the exact mechanisms underlying 
bypass effects, when they do occur, as well as for the relative effects of spill on post-BON SARs of 
barged and ROR fish.  

4.2.6.4 Future Research Needs 

A high degree of importance and extensive uncertainty make this factor of high priority for 
management and of high priority for research.  For a summarized version of future research needs and 
approaches, please see Table 5.1. 

With the mixed spill-transport strategy implemented since 2006, additional information about the 
relative benefit of transport across various scenarios of spill in high- and low-flow years will add to the 
range of conditions that have been investigated.  Predicted survival rates and D related to this question 
would help evaluate the mixed spill-transport strategy.  A better understanding of seasonal in-river 
conditions could also help determine appropriate times to begin and end barge transportation.  Thus far, 
2 years of low flow with spill have occurred:  in 2007 with court-ordered spill, and in 2010 when the 
Independent Scientific Advisory Board (ISAB) concluded that another opportunity for data collection and 
to “spread the risk” among species such as lamprey and sockeye salmon was warranted.  Possible 
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research approaches include retrospective data analysis and simulations (e.g., COMPASS model) in 
which annual and seasonal patterns are examined.  This research could take a few years.  Uncertainty is 
an important part of the predicted responses.  Expressing the uncertainty in a readily comprehensible way 
may be challenging.  Also, as structural improvements occur over the next several years or decades, a re-
analysis would be fitting. 

4.2.7 Barging Conditions ⑥ 

Hypothesis 1 – Differential delayed mortality of fish barged from LGS and LMN is lower than those 
barged from LGR. 

Hypothesis 2 – Dissolved metals and noise within barges are respectively toxic to the body and 
disruptive to the auditory sensitivity of barged fish.  

Hypothesis 3 – High surface-water temperatures aggravate fish condition during barge 
transportation and decrease their post-hydrosystem survival. 

Hypothesis 4 – Delayed mortality of fish barged to the site near Astoria (Alternative Barging 
Strategy) is lower than that to the traditional site downstream of BON (rkm 225) because of reduced 
predation by piscivorous fish and birds. 

See barge collection and release sites for Hypotheses 1 through 4 in Figure 4.8. 

 
Figure 4.8. Conditions Within Barges and Collection and Release Site Locations Can Affect the 

Post-Barging Condition of Fish 

4.2.7.1 Transport Collection Site (Hypothesis ⑥-1) 

In hatchery spring/summer Chinook salmon from 1994 to 2000, D decreased across the LGR (0.700), 
LGS (0.654), and LMN (0.502) transport sites (Williams et al. 2005).  This decreasing trend was not 
observed in wild spring/summer Chinook salmon or in hatchery steelhead.  In wild steelhead, D increased 
across the LGR (0.550), LGS (0.842), and LMN (1.757) transport collection sites.  NOAA (2010) 
reported seasonal estimates of T:I from 1998 to 2008 for wild and hatchery Chinook salmon and from 
1998 to 2007 for wild and hatchery steelhead transported from upstream of LGR, at LGR, and at LGS.  
This was an opportunistic analysis of data available to explore alternative standards of T:I for run-at-large 
fish and was not intended to determine best practices in relation to barge-loading sites and D.  The T:I 
ratios estimated with 95% confidence intervals (CIs) were equivalent when comparing between fish 
transported from LGR or LGS, by stock and by year.  Overall, there is little support for or against the 
hypothesis that D is lower for fish transported from LGS and LMN than from LGR. 
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Transport from MCN appears to be less advantageous to adult returns of barged fish relative to ROR 
migrants, in comparison to transport from LGR and LGS (Giorgi et al. 2002).  In more recent research, 
transportation of Columbia River hatchery spring Chinook salmon from MCN yielded higher SARs than 
those of bypassed ROR migrants, but not of undetected (i.e., spillway/turbine routes) ROR migrants 
(Marsh et al. 2010c).  Transportation was beneficial to Columbia River hatchery steelhead regardless 
whether ROR migrants were bypassed or were undetected at MCN. 

4.2.7.2 Dissolved Metals and Noise (Hypothesis ⑥-2) 

In barged spring/summer Chinook salmon, concentrations of dissolved metals were below critical 
levels that would disrupt aquatic life, and olfactory neurons were found to be intact in spring/summer 
Chinook salmon.  However, short-term disruption in the auditory sensory system of barged fish occurs 
because of the noise they experience during downstream passage (Halvorsen et al. 2009).  The barged fish 
appear to recover auditory sensitivities after 7 or more days.   

4.2.7.3 Water Temperature (Hypothesis ⑥-3) 

The condition of fall Chinook salmon is generally poor in July–August when water temperatures 
often exceed 21°C (Schreck et al. 2005).  Clemens et al. (2009) hypothesized that fall Chinook salmon 
transported in the mid- and late season had low survival rates in the LRE because of warm surface water 
circulating in the barges.  The ROR fall Chinook salmon could select water depths of cooler temperatures 
than those experienced by barged fall Chinook salmon.  In the COMPASS model (Zabel et al. 2008a, b), 
water temperatures influenced the survival of spring/summer Chinook salmon in the Snake River, but not 
in the Columbia River.  Survival rates for these fish were greatest at 11°C.   

High water temperatures likely stress fall Chinook salmon and Sauter et al. (2001) provides a possible 
mechanism.  The authors observed juvenile fall Chinook salmon from the Columbia River to prefer lower 
water temperatures (16.7°C to 11.1°C) in laboratory experiments as the season progressed (May 5 to 
August 7) and acclimation temperatures increased (12°C to 18°C).  The authors speculated that the 
preference for cooler waters may be to preserve the ATPase activity in the gills during smoltification.   

Furthermore, temperature correlates with travel timing and SARs of spring/summer Chinook salmon 
and steelhead in the form of a residual temperature effect (Scheuerell et al. 2009).  

4.2.7.4 Alternative Barging Strategy (Hypothesis ⑥-4)  

Schreck et al. (2005) recommended testing a barge release site lower in the estuary at night on an 
outgoing (ebb) tide to reduce avian predation on spring/summer Chinook salmon and steelhead.  Release 
of barged fish at rkm 10 (near Astoria) instead of the usual post-BON site at rkm 225 reduced the 
vulnerability of fish to avian predation (McMichael et al. 2006; Ryan et al. 2007; Marsh et al. 2008, 
2010b).  Ryan et al. (2007) determined that avian predation rates on PIT-tagged yearling Chinook 
released at Astoria (rkm 10) were one-seventh the rates of yearlings released at Skamania Landing 
(rkm 225).  For yearling Chinook salmon in 2008, minimum predation rates were 3.9% for those released 
at rkm 225 and 0.9% for those released at rkm 10 (Marsh et al. 2010b).  Similarly for steelhead, minimum 
predation rates were 14.9% for the rkm 225 release group and 4.4% for the rkm 10 release group.  Results 
were similar in 2006 and 2007.  The SARs for the 2006 release group showed benefits from the 
alternative barging strategy for steelhead (Skamania:Astoria = 1.20; 95% CI = 1.01–1.41), but 
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disadvantages for yearling Chinook (Skamania:Astoria = 0.49; 95% CI = 0.18–1.31).  Furthermore, rates 
of straying increased for barged steelhead and lowered conversion rates between BON and LGR.  Fish 
from the alternative barging strategy may be physiologically unprepared for seawater entry and 
consequently experience delayed mortality.   

A predictive model of smolt survival was developed primarily to determine predator-prey 
relationships, which include the degree of overlap in time and space, and the maximum energy needed in 
the predator population (ICF Jones & Stokes 2009).  Although adult survival rates cannot be determined 
from this model, it does model aspects of the LRE that may be important determinants of D.  Travel times 
through the estuary and proportions of release beyond the foraging radius of east Sand Island highly 
influenced results from the model.  The model predicted that terns and cormorants were responsible for 
5.4% of steelhead mortality and 3.6% of Chinook salmon mortality.  The researchers assumed 
17.4% mortality due to Northern pikeminnow (Ptychocheilus oregonensis) (Porter 2008).  With the 
alternative barging strategy, mortality due to N. pikeminnow predation was eliminated, and mortality due 
to avian predation decreased for Astoria releases relative to the Skamania releases seven-fold for yearling 
Chinook and five-fold for steelhead.  The analysis also showed that ROR migrants experienced very little 
additional mortality (< 0.03) caused by the lack of barged migrants that would have been released from 
Skamania.  However, scenarios with reduced alternative prey such as non-salmonids and lower-river 
salmonids showed that survival of ROR migrants decreased.   

4.2.7.5 Importance to D and Level of Uncertainty 

Transport Site, Surface-Water Temperature, and Alternative Barging Strategy 

Medium importance to D and extensive data gaps and uncertainty  

The transport site sometimes influences D but relatively extensive data gaps and uncertainty remain.  
Warm surface-water experienced by barged fall Chinook salmon could negatively affect their condition 
relative to ROR migrants.  However, differences between surface- and deep-water temperatures 
experienced by the juvenile salmonids particularly in the upper dams of the FCRPS have yet to be 
determined.  Also, preliminary results of the alternative barging strategy appear to show benefits of 
reduced avian predation but also disadvantages of increased rates of straying for steelhead.  The overall 
benefits, or lack thereof, from these two drivers have yet to be determined.  Altogether, these three factors 
show some influence on D, but much uncertainty remains.   

Dissolved Metals and Disrupted Auditory Senses 

Low importance to D and limited data gaps and uncertainty  

This factor is considered to be of relatively low importance to D because of its lack of significant 
effect from dissolved metals and the relatively short duration of disrupted auditory sense.  Additional 
research could be conducted to determine whether this compromised auditory sensitivity affects predator 
avoidance during passage through the LRE.  However, relative to all other potential factors of D 
considered, this was ranked as having limited data gaps and uncertainty.   

4.2.7.6 Future Research Needs 

For a summarized version of future research needs and approaches, please see Table 5.1. 
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Transport Site, Surface-Water Temperature, and Alternative Barging Strategy 

Research on alternative transportation sites would need a two-pronged approach.  The first prong is to 
determine if the SAR from alternative sites were statistically different across species.  In the second 
prong, studies at each site would be needed to determine if changes in survival capacity of transported 
fish are related to the collection system at the dam (e.g., Matthews et al. 1986) or to the passage of fish to 
the dam.  The value of such studies would be identify whether lower river transportation is viable and 
identify possible sources of stress in transportation. 

Studies of the effect of surface-water temperature on barge water conditions do not appear warranted 
for spring/summer Chinook.  Studies of fall Chinook may be warranted but are deemed of limited success 
because the vertical water profile through much of the river system is homogeneous so a source of cooler 
water is unavailable.  However, studies that relate cumulative temperature exposure of fall Chinook as 
barge and ROR passage types may have value. 

Dissolved Metals and Disrupted Auditory Senses 

Based on the relative low importance and limited uncertainty of this factor, future research was 
considered unwarranted. 

4.2.8 Lower Columbia River (BON to rkm 56) Conditions and Predators ⑦ 

Hypothesis – Survival through the lower river is seasonally variable and depends on species and the 
migration history of fish.  Mechanisms include the temporal pattern of predators and the seasonal pattern 
of fish migration rate through the lower river.  (See Figure 4.9.) 

 
Figure 4.9. Northern Pikeminnow is a Major Predator in the Lower River Downstream of BON and 

Potential Impact on the Population Depends on Fish Length  and Predator Population 
Density  

Spring/Summer Chinook 

ROR fish had higher migration rates than barged fish between BON and rkm 89 (Schreck et al. 2005).  
The migration rates do not appear to trend with survival patterns.  Survival in the lower river (BON to 
rkm 56) is generally relatively high (approx. 0.9) for spring Chinook salmon (Schreck et al. 2006; 
Clemens et al. 2009; McMichael et al. 2010).  Work conducted from 1996 to 1998 indicated that avian 
predation rates of spring/summer Chinook salmon ranged from 0% to 40% from BON to rkm 89, and 7% 
in 2004 (Schreck et al. 2005).  There were no differences between barged and ROR yearling Chinook 
salmon.  Survival rates between BON and rkm 56 are expected to be higher now with the bird colony 
removed from Rice Island.  Also, the survival rate may currently be higher than in the past because the 
lower river abundance estimate of N. pikeminnow declined 36% from the 1994 to 1996 period to the 2004 
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to 2008 period (Porter 2008).  Recent estimates of survival in the lower river with Juvenile Salmon 
Acoustic Telemetry System (JSATS)-tagged yearling Chinook salmon were high, with survival 
probabilities being greater than 0.997/km between BON and rkm 50 (McMichael et al. 2010).  Also, Mesa 
et al. (2008) found no evidence of size-selective predation by N. pikeminnow in a field survey of length 
frequency distributions of yearling Chinook salmon that were barged, ROR, and in N. pikeminnow diets.  
Overall, the literature shows high survival rates of spring/summer Chinook salmon in the lower river.   

Fall Chinook Salmon 

From BON to rkm 89, ROR fall Chinook had higher survival rates than barged fish in 2002 and 2003, 
particularly in the late season (Schreck et al. 2005; Clemens et al. 2009).  ROR fall Chinook survival 
declined and remained around 1 across the season in 2002, while the survival of the barged counterparts 
declined from 0.8 to 0.6.  In 2003, ROR survival declined from 0.8 to 0.5, while barged fish survival 
declined from about 0.8 to less than 0.1.  Estimates for fall Chinook salmon survival between BON and 
rkm 46 were similar to the patterns from BON to rkm 89 (Clemens et al. 2009).  The survival patterns do 
not appear to be related to travel rates or avian predation (Schreck et al. 2005; Clemens et al. 2009).  
Schreck et al. (2005) observed high variability in the migration rates of fall Chinook salmon that caused 
each release group to not reach the upper estuary as one distinct group.  Ledgerwood et al. (2007) also 
found that the travel rates of barged and in-river migrating fall Chinook salmon did not significantly differ 
in the LRE.  But, survival of fall Chinook salmon was negatively influenced by the seasonal decline of 
river flows (Clemens et al. 2009).  More recent estimates show that the survival from BON to 
approximately rkm 56 of ROR fall Chinook collected at JDA declined across the season from about 0.9 to 
0.5 (McMichael et al. 2010).   

Steelhead 

Barged and ROR steelhead had similar migration rates between BON and the estuary at rkm 89, and 
there was no relationship between migration rate and survival rates (Schreck et al. 2005).  This is likely 
because steelhead survival between BON and rkm 46 is relatively high (Clemens et al. 2009).   

4.2.8.2 Importance to D and Level of Uncertainty 

Low importance to D and limited data gaps and uncertainty (for spring/summer Chinook salmon and 
steelhead) 

Moderate importance to D and extensive data gaps and uncertainty (for fall Chinook salmon) 

The minimal differences in lower-river survival rates between barged and ROR make this factor a 
non-significant contributor to D for spring/summer Chinook salmon and steelhead.  However, for fall 
Chinook, the lower survival of barged fish relative to ROR fish make this factor of moderate importance 
to D but extensive data gaps remain. 

4.2.8.3 Future Research Needs 

A low degree of importance and a low level of uncertainty make this factor of low priority for 
management and of very low priority for research for spring/summer Chinook salmon and steelhead.  
Future research is not warranted for these species.  

For fall Chinook salmon, future research could encompass determining differential survival rates of 
barged and ROR fish, and the causes of these differences.  Some testable causes include arrival timing, 
physiological condition, disease, and size-selective predation. 
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4.2.9 Estuarine Conditions (below rkm 56) and Predators ⑧ 
Hypothesis – Bird predators consume smolts in the freshwater-seawater interface where 

susceptibility depends on species, level of smoltification, stress, and other fish conditions.  These factors 
may be significant in determining the seasonal variations in D.  (See Figure 4.10.)  

 
Figure 4.10. Representative Populations of Smolts in the Estuary (Top Graph) and Proportion of 

Salmonids in the Diet of Caspian Terns (Middle Graph) and Double-Crested Cormorants 
(Bottom Graph).  Top graph reproduced from ICF Jones & Stokes (2009) with permission.  
Middle and bottom graphs reproduced with permission from Bird Research Northwest, 
www.birdresearchnw.org accessed on 5 July 2011.   
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Spring/Summer Chinook Salmon 

Studies, such as those by Schreck et al. (2006), Roby et al. (2011b), and ICF Jones & Stokes (2009), 
hypothesize that bird predation is a major factor in smolt consumption in the Columbia River Estuary 
(CRE).  However, much of the research focuses on overall avian predation rates among different 
salmonid stocks, and not on stocks with different migration histories (i.e., barge versus ROR).  We first 
synthesize research on avian predation rates, then survival rates in relation to travel rates, and finally 
seasonal patterns. 

The avian predation rates from 2004 to 2009 by the tern colony on East Sand Island were greater 
among hatchery spring Chinook salmon (2.7%; 95% CI 2.5%–2.9%) relative to wild ones (1.2%; 0.8%–
1.6%) (Roby et al. 2011b).  Predation rates by the cormorants from East Sand Island were generally lower 
than those by terns.  There was no statistically significant difference in cormorant predation rates between 
hatchery and wild spring/summer Chinook salmon. 

It is hypothesized that the differential in arrival timing between ROR and transport fish can result in 
differential susceptibility to bird predators.  Travel rates and survival rates of outmigrating spring/summer 
Chinook salmon both decline at approximately rkm 50 (Carter et al. 2009; Eder et al. 2009a; McMichael 
et al. 2010).  Also, barged fish have lower travel rates and lower survival rates than ROR migrants 
(Eder et al. 2009a).  In 2008, Eder et al. (2009a) observed ROR spring/summer Chinook salmon 
decreasing their travel rate from 98.4 km/d between rkm 202 and rkm 36 to a rate of 53.5 km/d between 
rkm 36 and rkm 8 (Appendix D, Appendix Section F.1.6).  Their survival rates in these two reaches also 
decreased from 0.97 (SE 0.02) to 0.89 (SE 0.02).  For the barged counterparts in these two respective 
reaches, their travel rate decreased from 49.3 km/d to 27.8 km/d, and their survival decreased from 0.92 
(SE 0.02) to 0.78 (SE 0.03).  Differences in where ROR and barged spring/summer Chinook salmon 
occur in the water column, if any exist, could also explain their differences in predation rates.  McMichael 
et al. (2010) observed similar patterns in 2009, but the patterns were not as pronounced as those from 
Eder et al. (2009a).  Median travel rates were at least 75 km/d between BON and rkm 50, and then 
decreased to approximately 45 km/d between rkm 50 and rkm 22.  In the last reach, between rkm 22 and 
rkm 8, median travel rates were greater than 100 km/d, with 25th and 75th percentiles, respectively, at 
about 30 km/d and 175 km/d.  The survival probabilities were greater than 0.996/km in different reaches 
downstream of BON up to rkm 22, after which rates dropped to 0.982/km.  Differences in the patterns 
from these two studies are possibly due to differences in environmental conditions in the 2 years tested 
and because different stocks of fish were tested.  Eder et al. (2009a) tested spring/summer Chinook 
salmon originating from upstream of LGR, while McMichael et al. (2010) tested those originating from 
upstream of JDA.  Overall patterns show that survival per unit distance decreases with travel rate.   

The seasonal proportion of salmonids in the diet of Caspian terns and double-crested cormorants 
generally coincides with the salmonid outmigration runs (Figure 4.10).  However, the exact effects of the 
seasonal changes in bird behaviors and population densities on the avian predation rates of ROR and 
barged spring/summer Chinook salmon are unknown.  In general, travel rate and survival increased across 
the season (McComas et al. 2008; Carter et al. 2009, Eder et al. 2009a; and McMichael et al. 2010), with 
travel rate likely being influenced by the increased river discharge (Schreck et al. 2005; Eder et al. 
2009a).  However, McMichael et al. (2010) have also shown that avian predation rates estimated from 
recovered PIT tags on East Sand Island were greatest in the middle of the outmigration season (mid-
May).  The difference between these two seasonal trends may be due to the fact that the initial pattern 
captures overall survival rates that include predation by piscivorous birds and fish throughout the estuary 
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and other types of mortality such as poor health, while the second pattern is only the avian predation from 
East Sand Island.  This may indicate the importance of other sources of predation and types of mortality 
other than the avian predation from East Sand Island.  Furthermore, the dilution of Snake River fish with 
alternative prey fish from the lower river lessens the predation pressure by birds.  Approximately 60% of 
the smolts in the estuary are from stocks entering downstream of BON and 90% of these are of hatchery 
origin (ICF Jones & Stokes 2009).     

Fall Chinook Salmon 

Few estimates, if any, of survival and travel rates for ROR and barged fall Chinook salmon in the 
CRE exist.  Only survival and travel rate estimates of ROR fall Chinook collected and tagged at JDA and 
BON are available (McComas et al. 2008; McMichael et al. 2010).  Schreck et al. (2005) conducted 
laboratory experiments and found no difference between barged and ROR fish in their preference for 
saltwater or in their ability to osmoregulate in saltwater.  Thus, there has been little or no support for 
different travel rates between fall Chinook salmon with the two types of migration histories.  Below, we 
summarize the patterns of survival and travel rates observed for run-at-large fall Chinook salmon 
collected at JDA or BON. 

In 2006, from BON to rkm 8.3, the survival rates of fall Chinook salmon, collected and tagged at 
BON, decreased from approximately 1.005 (SE 0.0458) to 0.179 (SE 0.0410) throughout the season 
(McComas et al. 2008).  In 2009, similar results from fall Chinook, collected and tagged at JDA, were 
observed with survival rates from BON to rkm 8.3 ranging from 0.78 (0.003) to 0.36 (0.04) throughout 
the season (McMichael et al. 2010).  Despite the patterns of seasonal decline in survival, fall Chinook 
salmon did not show a seasonal pattern in travel time from BON to rkm 8.3 (McComas et al. 2008).   

Survival rates per unit distance decreased rapidly across the different reaches downstream of BON:  
from approximately 0.998/km between BON and rkm 50, to 0.9965/km between rkm 50 and rkm 22, and 
then 0.9945 between rkm 22 and rkm 8 (McMichael et al. 2010).  Comparatively, travel rates decreased in 
this reach:  median travel rates declined from approximately 75 km/d to about 25 km/d from BON to rkm 
22.  Travel rates were about 40 km/d with 25th and 75th percentiles at about 25 km/d and 175 km/d, 
respectively.  The decline in travel rate from rkm 50 to rkm 8 might cause increased susceptibility to 
predation.  Furthermore, the travel rates of barged fall Chinook salmon generally decreased with river 
flow (Ledgerwood et al. 2007).  Ledgerwood et al. (2007) speculated that increased barging activity with 
decreasing flows late in the season would increase the propensity of fall Chinook salmon to residualize 
and overwinter in the estuary.  They also observed several in-river residuals (yearling fall Chinook 
salmon) in the upper estuary in May.  The effects of the two different juvenile life-history strategies 
(i.e., subyearling ocean-type versus residuals) on their predation risk in the estuary and on D are 
unknown. 

Estimates of avian predation on fall Chinook salmon are as follows.  Schreck et al. (2005) found that 
overall avian predation rates on fall Chinook salmon from the piscivorous bird colonies ranged between 
0% and 9% between 2001 and 2003.  McComas et al. (2008) observed avian predation rates in 2006 from 
East Sand Island, and estimated these to be at least 2.5% for fall Chinook salmon.  The range was from 
1.2% to 4.5% throughout the outmigration season.  They also observed the highest rates of avian 
predation occurred in the mid to late part of the season (mid-July).  Roby et al. (2011b) observed from 
2004 to 2009 that the avian predation rates on fall Chinook salmon were 1.4% (95% CI 1.3%–1.5%).   
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Patterns in avian predation rates may be explained by where the fish occur in the water column.  
Subyearling Chinook salmon tend to be found at greater depths than spring/summer Chinook salmon 
(Carter et al. 2009).  Mean migration depths were 4.6–27.7 m for subyearlings and 4.1–10.5 m for 
spring/summer Chinook salmon.  Lower avian predation rates on subyearlings than spring/summer 
Chinook salmon and steelhead support the hypothesis that subyearlings occupy deeper waters.  
Furthermore, smaller-sized fall Chinook salmon occupy shallow near-shore areas, while larger ones 
occupy deeper offshore channel areas of the estuary.  More specifically, subyearlings < 60 mm in length 
were in < 1-m water, those 60–100 mm in length were in shoals and tributary channels, and those 
> 100 mm in length were in deep and shallow waters (Carlson et al. 2001; Bottom et al. 2005; Carter et al. 
2009).  Although the difference among barged and ROR migrants in where they occur in the water 
column could result in selective avian predation, predation rates have not been observed to significantly 
differ between fall Chinook salmon from the two migration histories (Schreck et al. 2005).   

Steelhead 

ROR migrants had higher survival rates than barged steelhead to the upper estuary (rkm 89), but not 
to rkm 46 (Schreck et al. 2005).  Avian predation for barged fish and ROR migrants and river outflow 
were, respectively:  6% barged, 1% ROR, 4.07 kcms in 2001; 11% barged, 17% ROR, 7.05 kcms in 2002; 
and 30% barged, 22% ROR, 7.83 kcms in 2003.  Also, there were no differences between fish with these 
two migration histories in their saltwater preference or ability to osmoregulate even though ATPase 
activity was significantly greater among ROR migrants than barged fish.  Thus, support for the hypothesis 
of increased susceptibility to avian predation due to incomplete smoltification remains ambiguous. 

With regard to different rearing types, Roby et al. (2011b) found that tern predation rates were greater 
among wild fish (13.8%; 95% CI 12.9%–14.7%) than hatchery fish (10.6%; CI 10.3%–11.0%).  
Cormorant predation rates, however, showed the opposite pattern in which hatchery steelhead (7.1%; 
CI 6.6%–7.6%) experienced higher predation rates than wild steelhead (5.7%; CI 4.9%–6.6%).  Also, 
Schreck et al. (2005) detected no differences between wild and hatchery steelhead survival rates from 
BON to rkm 89 or to rkm 46.   

Avian predation rates were generally greater among steelhead than spring/summer Chinook salmon 
(Roby et al. 2011b; McMichael et al. 2010).  Two possible reasons for this pattern were suggested by 
McMichael et al. (2010).  The first is that steelhead migrate higher in the water column than Chinook 
salmon and are thus more vulnerable to avian predation.  The second is that steelhead contain more 
energetic content due to their larger size, and thus are more targeted than spring/summer Chinook salmon.  
The pattern of survival per unit distance observed in steelhead was similar to that of spring/summer 
Chinook salmon in that they both declined the closer they were to the mouth of the CRE.  However, there 
was a steeper decline in survival between rkm 96 and rkm 22 for steelhead than for spring/summer 
Chinook salmon.  Furthermore, avian predation rates from East Sand Island on steelhead were greatest in 
the middle of the outmigration season (McMichael et al. 2010).  Spatially in the LRE and temporally 
across the season, the lowest survival rates of steelhead generally coincided with where the bird colonies 
on East Sand Island occur and also with when smolts make up the greatest proportion of the diet of 
Caspian terns and double-crested cormorants (Bird Research Northwest 2011). 

Predation risk of Snake River Basin steelhead by Caspian terns has been determined to be 
significantly influenced by external condition, length, water discharge, and water clarity (Roby et al. 
2011b).  Although this study was conducted in the mid-Columbia, the results give us insight into what 



 

4.32 

characteristics of the fish or what environmental conditions increase steelhead vulnerability to predation 
by Caspian terns.  Predation risk increased as external fish condition declined, water discharge decreased, 
and water clarity decreased.  Predation risk was generally positively correlated with fork length, peaked 
for steelhead measuring 202 mm, above which it became negatively correlated with fork length.   

4.2.9.2 Importance to D and Level of Uncertainty 

High importance to D and extensive data gaps and uncertainty  

This factor is considered to be of high importance to D because of the significant declines in survival 
across the reaches of the CRE for spring/summer Chinook salmon, steelhead, and fall Chinook salmon, as 
well as the differential seasonal pattern in travel times and survival rates between barged and ROR 
Chinook salmon.  There are still extensive data gaps and uncertainty because of the lack of differential 
survival estimates in the CRE between barged and ROR fish for fall Chinook and steelhead.  Also, the 
exact mechanisms of the differential seasonal pattern in travel times and survival rates between barged 
and ROR Chinook salmon are unknown. 

4.2.9.3 Future Research Needs 

A high degree of importance and extensive uncertainty make this factor of high priority for 
management and of high priority for research.  For a summarized version of future research needs and 
approaches, please see Table 5.1. 

Estimates of differential survival rates in the CRE between barged and ROR fish for steelhead and 
fall Chinook salmon would fill a large data gap.  This research could be conducted in a few years.  
Additional years of research would provide more insight and help solidify conclusions.   

By determining what and how seasonal estuary conditions are associated with the differential survival 
of barged and ROR fish in the CRE, indices could be developed to determine appropriate times to 
implement barging.  One approach to studying this is to run data analyses and simulations of estuary 
conditions (e.g., flow, turbidity, and percent smolt in avian predator diets) in relation to seasonal 
differential survival rates.  Furthermore, field surveys and experimental studies can help provide a better 
understanding of the underlying mechanisms involved with the slower travel rates of barged fish relative 
to ROR fish.  This information could help determine ways of increasing travel rates and possibly lower 
predation risk.  Some hypothesized mechanisms include incomplete smoltification and disease.  Also, 
differences in migratory pathways and swimming depths may also be associated with differential 
susceptibilities of predation.  However, methods of modifying migration pathways and swimming depths 
of fish in the CRE are likely not feasible.  Simulation studies are estimated to span a few to several years, 
while field surveys and experimental studies can span several years to decades.  One potential challenge 
is detecting a sufficient sample of JSATS-tagged fish for which fate within the CRE can reliably be 
assigned.   Another potential challenge is determining indices with sufficient predictive power and time 
scales of forecast for seasonal management of the transportation program.   

One avenue of research that is relatively unexplored is the density-dependent effects from hatchery 
releases on differential survival rates of barged and ROR fish in the CRE.  The timing of hatchery 
releases could help alleviate predation risk of barged and ROR migrants.  Investigating the effects from 
hatchery releases can include those that occur between the dams that participate in the juvenile fish 
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transportation and BON, as well as those that occur downstream of BON.  Data analyses and simulations 
to investigate these patterns can take a few years.  Although barged and ROR Snake River Basin fish may 
experience reduced predation risk with the protection in numbers from other hatchery fish, these benefits 
may be counteracted by increased competition for food resources.  Investigation of these indirect effects 
may take another few years.   

4.2.10 Oceanic Conditions ⑨ 

Hypothesis – Arrival timing of fish to the ocean affects survival through seasonal patterns of onset of 
upwelling, spring productivity, arrival of ocean predators, and alternative prey.  (See Figure 4.11.) 

 
Figure 4.11. Seasonally and Interannually Varying Ocean Conditions  Affect Ocean Survival of ROR 

and Barged Fish 

The arrival time of fish to the estuary (and essentially the ocean) can affect their survival rate 
(Scheuerell et al. 2009).  Using data on Chinook and steelhead detected at BON from in-river passage, 
Scheuerell et al. (2009) found estuary arrival data (y and y2) were among the best predictors of SAR.  
Metrics indicating the status of the Pacific decadal oscillation in April, May, and June were determined to 
be significant predictor variables for adult returns and were also important in a population viability 
analysis (Zabel et al. 2006).  Upwelling in April, September, and October also correlated with the spring 
Chinook time series return model (Scheuerell and Williams 2005).  Spring and fall ocean upwelling is 
strongly correlated with smolt-to-adult survival (Scheuerell et al. 2005).  In a more recent study, survival 
rates for Chinook salmon and steelhead decreased under warm ocean conditions and reduced spring 
upwelling (Petrosky and Schaller 2010).  Furthermore, annual patterns of good and bad ocean conditions 
coupled with population density effects can strongly influence salmonid survival (Levin et al. 2001; Zabel 
et al. 2006).  In general, upwelling conditions, populations of predators, density-dependent effects, and 
forage base are thought to be factors affecting the survival of juvenile salmon and steelhead when they 
enter the ocean.  

The Columbia River plume is a habitat where juvenile salmonids can complete smoltification, grow 
by consuming the abundant and localized plankton, and find refuge from marine predators in the turbid, 
sediment and nutrient-rich water (NOAA 2007; De Robertis et al. 2005; Carter et al. 2009).  But the 
pattern of highly abundant juvenile salmonids in the plume relative to marine waters appears to be 
ephemeral.  Outside of the plume, juvenile salmonids tend to be larger while inside the plume, they tend 
to still be undergoing physiological adaptation to seawater and are of sizes susceptible to predation 
(Fisher and Pearcy 1995; De Robertis et al. 2005).  Juvenile salmonids generally occupy the plume, but 
this pattern is not consistent across species or years, and fish outside the plume tend to have fuller 
stomachs.  Ocean conditions can affect the critical size and critical period effects on salmon growth and 
survival (see Section 4.2.3.5 for more information).  Furthermore, evidence for significant marine 
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predation on salmonids that have migrated through the FCRPS has not been established (Emmett et al. 
2006, 2008).  The high variability in forage fish and zooplankton abundance over short time periods can 
make it difficult to determine the amount of effect from bottom-up and top-down ecological processes 
(Emmett and Muir 2009).  Preliminary results suggest that the size of yearling Chinook salmon at ocean 
entry, determined through scale analysis, influences marine survival (Emmett and Muir 2009).  Also, 
competition and predator aggregations appear to negatively affect ocean survival, and with influences 
from density-dependent effects and climatic conditions (see presentation abstract by K. Holsman in 
Appendix D).  

4.2.10.1 Importance to D and Level of Uncertainty 

High importance and extensive data gaps and uncertainty  

We consider this factor to be of high importance because of the strong effects of ocean conditions on 
SARs.  As well, there are extensive data gaps and uncertainty in the mechanisms that drive differential 
survival between barged and ROR fish. 

4.2.10.2 Future Research Needs 

A high degree of importance and extensive uncertainty make this factor of high priority for 
management and of high priority for research.  For a summarized version of future research needs and 
approaches, please see Table 5.1. 

By determining how seasonal and inter -annual ocean conditions are associated with D, indices could 
be developed to help determine when and under what conditions an effective execution of the juvenile 
fish transportation program would result.  Some indices include turbidity, upwelling, forage fish, and 
piscivorous fish.  Retrospective data analyses and model simulations can help determine the patterns and 
degrees of uncertainty related to these time-sensitive forecasts.  These analyses can take a few years to 
execute, and would need to be refined with ocean condition and SAR data collected over the next 
decades.   

4.2.11 Straying and Fallback  

Hypothesis – Barging affects in-river homing ability of adults and increases the rate of straying and 
fallback.  (See Figure 4.12.) 

 
Figure 4.12. Fallback of Adults Migrating Through the Hydrosystem and Straying into Other Streams 

Occur at Different Rates for ROR and Barged Fish and Can Contribute to D 
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Spring/Summer Chinook Salmon 

Barged Chinook salmon (and steelhead) migrating out to the ocean between 1998 and 2002 homed to 
LGR at rates about 10% lower than for ROR migrants (Keefer et al. 2006, 2008a).  This decreased rate of 
homing includes straying, fallback, and other effects.  These results suggest that there is a relatively small 
difference between barged and in-river stocks upstream of LGR that are losing fish from straying.  
Among barged Chinook salmon, the wild fish were 7.5% less likely to stray than hatchery counterparts.  
The majority of strays migrated up the John Day and Deschutes rivers.  In a more recent analysis of 
juveniles migrating out to the ocean between 2001 and 2008 (Tuomikoski et al. 2011), barged hatchery 
spring/summer Chinook salmon strayed 17 times more than their ROR counterparts (0.52% vs. 0.03%).  
This pattern was similar for the wild barged vs. ROR counterparts (0.97% vs. 0.06%).  Ruzycki and 
Carmichael (2010) also observed greater rates of straying among barged spring/summer Chinook salmon 
than their ROR counterparts.  However, these were observations of stocks receiving straying fish, and not 
losing fish from straying.   

Barged spring/summer Chinook salmon (and steelhead) were also 1.7–3.4 times more likely than in-
river fish to fall back downstream past dams as adults, a behavior strongly associated with lower survival 
(Keefer et al. 2008a).  High fallback rates are usually associated with high river flows and spill, and also 
the location of fishway exits relative to spillways.   

In the alternative barging study, conversion rates (the percentage of adults detected at BON and LGR) 
of yearling Chinook salmon were lower for those barged to Astoria (60%) than those barged to Skamania 
Landing (73%) (Marsh et al. 2010b).  There were also no differences detected between hatchery and wild 
yearling Chinook salmon.  One yearling Chinook salmon was detected straying into the Upper Columbia 
River.  It is also important to note that detection of strays from LGR to tributaries is limited by the 
availability of in-stream PIT detectors.   

Fall Chinook Salmon 

No estimates of straying for barged and ROR fall Chinook salmon have been determined.  

Steelhead 

Higher rates of straying were observed for steelhead than spring/summer Chinook salmon (Keefer et 
al. 2006, 2008a; Tuomikoski et al. 2011).  Barged hatchery and wild steelhead that migrated out to the 
ocean between 2005 and 2007 strayed eight times more often than their ROR counterparts (5.77% 
vs. 0.69%).  Ruzycki and Carmichael (2010) also observed greater rates of straying in steelhead (23–37%) 
than in spring/summer Chinook salmon (1.9%) since the year 2000.  Again, these were observations of 
stocks receiving straying fish, and not losing fish from straying.  Among barged steelhead, similar rates of 
straying occurred between hatchery and wild fish.  Rates of straying in steelhead increased from 1992 to 
2007, after which rates declined.  The decline coincides with decreased numbers of barged smolts.  These 
results from Ruzycki and Carmichael support the hypothesis that barging increases straying rates.   

Conversion rates were significantly lower for steelhead smolts barged to an alternative site near 
Astoria (48%) than for those barged to the traditional release site at Skamania Landing (60%) in 2006 
(Marsh et al. 2010b).  No differences were observed between hatchery and wild steelheads.  The majority 
(64%) of steelhead detected straying were from the barges releasing fish at the alternative site.  Most 
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(85%) of the strays were detected in the John Day River.  Other tributaries where strays were detected 
include the Walla Walla, Yakima, and Umatilla rivers.  Ten of the 53 strays were eventually detected at 
LGR.  Again, it is important to note that detection of strays from LGR to tributaries is limited by the 
availability of in-stream PIT detectors.   

These results suggest that juvenile transport impaired adult orientation or homing abilities, perhaps by 
disrupting sequential imprinting processes during juvenile outmigration.  Other possible causes of 
wandering behavior include difficulty in detecting natal streams, evolutionary adaptation to spread to 
other sites, and use of non-native hatchery broodstock (Ferguson et al. 2005; Keefer et al. 2006).  The 
mechanisms for greater straying among steelhead relative to Chinook salmon are unknown (Ruzycki and 
Carmichael 2010). 

4.2.11.2 Importance to D and Level of Uncertainty 

Low importance and limited data gaps and uncertainty (for spring/summer Chinook salmon)  
Moderate importance and limited data gaps and uncertainty (for steelhead) 

The relatively small differences in straying and fallback between barged and ROR spring/summer 
Chinook salmon over several years of investigation make this factor of low importance to D and with 
limited uncertainty for this particular species and run.  Overall, for ROR spring/summer Chinook salmon, 
there has been greater concern for stocks receiving strays than the Snake River stocks losing fish from 
impaired homing abilities. The higher differential rates observed between barged and ROR steelhead 
make this factor of moderate importance to D.   

4.2.11.3 Future Research Needs 

For steelhead, a moderate degree of importance and limited uncertainty make this factor of moderate 
priority for management but of low priority for research.  Any future research should be directed toward 
new uncertainties that are identified during the course of management. 

For spring/summer Chinook salmon, a low degree of importance and limited uncertainty make this 
factor of low priority for management and of very low priority for research.  Future research is not 
warranted in relation to D.   

Although no estimates of straying and fallback for barged and ROR fall Chinook salmon have been 
determined, future research to determine these differential rates will likely be difficult.  Estimates of D 
already result in high levels of uncertainty.   

4.2.12 Estimation of Survival and Tagging Effects  

Hypothesis 1 – Survival estimates by select passage routes through dams bias D.   

Hypothesis 2 – Tag burden affects fish condition, growth, travel time, and indirectly D.   

See Figure 4.13. 
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Figure 4.13. Survival Estimates From Only PIT-tag-detected Fish Bias D Estimates and Tagging Effects 

Influence D 

Estimation of Survival 

Estimates of survival can be biased because they are based on PIT-tagged fish that are detected only 
when they pass through the bypass system and consequently experience lower survival than fish that pass 
undetected (i.e., spill or turbine routes).  Because of this process, seasonal patterns of T:I have been 
determined to be biased high.  An alternative standard for T:I has been developed to compensate for the 
bias related to reduced survival of bypassed fish (NOAA 2010).  This alternative sets the bar higher than 
the traditional standard of T:I set at 1.0.  Alternative standards ranged from 1.02 to 1.04 for wild Chinook 
and from 1.03 to 1.11 for wild steelhead at LGR, and from 1.08 to 1.22 for wild Chinook and from 1.08 to 
1.31 for wild steelhead at LGS.  Because T:I is computed from the point of collection and barging, it 
includes the survival benefit of barging relative to ROR migration upstream of the release point.  For that 
reason, it tends to be larger than D.  Estimates of D could be affected by lower survival rates of ROR 
migrants that have passed through one or more bypass system(s) relative to those that have never passed 
through a bypass system (i.e., no detection).  These “control” fish have been referred to as C1 and C0, 
respectively, in CSS studies.  Most estimates of D are estimated with C0 migrants, but when the data are 
not available, combinations of C1 and C0 fish or only C1 are used (e.g., during the low flow, low spill, and 
high transport year of 2001) (Petrosky 2010; Tuomikoski et al. 2010; Wilson 2010).  The choice of which 
control fish type to use also relates to whether the study is intended to compare transport to fish that have 
never been collected (C0; unavailable for transport) or to fish that have been collected (C1) and must be 
either transported or returned to the river.  For relative comparisons, it is helpful to begin with equivalent 
groups at hatchery release so that SARs can be compared among ROR and barged migration histories 
with less uncertainty about other factors.  

Tagging Effects 

A general assumption in estimating survival is that the tagged population is representative of the 
whole population.  There is always a concern that tagging will influence the performance of fish in a 
study, but the relative differences in survival between barged to ROR fish are what’s important to 
understanding D.  Differences between tagged and non-tagged fish (Appendix C) are likely to affect 
estimates of D only if barged and ROR migrants were affected differently by tagging.  Furthermore, while 
tag sizes have been decreasing over time, the exclusion of fish too small to tag without exceeding the 
accepted limits of tag burden could bias estimates of D.  There are many other aspects of good 
experimental design that help avoid biased results in any study, and tagging studies would require just as 
much care in that regard as any other approach. 
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PIT Tags 

The small size of PIT tags means that they typically compose a small fraction of the body mass of a 
tagged fish.  In spite of the relatively low body burden that PIT tags create, it is still wise to consider 
whether these tags or the process of tagging may influence survival rates or study outcomes.  Tag loss and 
decreased survival of PIT-tagged fish, two potential sources of bias, were found by Knudsen et al. (2009).  
Estimates of the SARs of PIT-tagged migrants were reduced by 25% on average because of tag loss and 
reduced survival, relative to non-PIT-tagged (NPT) fish on the basis of coded wire tag (CWT) results.  
After correcting for tag loss, PIT-tag-induced mortalities were as great as 33.3% (10.3% across brood 
years 1997–2001).  Also, mean lengths and weights of PIT-tagged fish were generally lower than NPT 
fish, and significantly so for age-4 adults.  Although these findings suggest a potential for a negative bias 
in SAR estimates using PIT-tagged fish, it is possible for estimates of D that are based upon those SARs 
to be biased in either direction, or to be unbiased if these factors cancel out between barged and in-river 
groups. 

Acoustic Tags 

Juvenile salmon migrants tagged with ATs, which are typically larger than a PIT, were generally 
more affected than PIT-tagged migrants.  AT-tagged migrants had less visible fat than PIT-tagged 
migrants (Rub et al. 2009).  Liver and kidney discoloration and abnormalities were more prevalent in 
AT-tagged migrants than in PIT-tagged migrants.  Slower travel rates were observed in AT-tagged 
migrants than in PIT-tagged subyearling migrants.  Among subyearlings, AT-tagged migrants had lower 
survival than PIT-tagged migrants at LGS and MCN.  In laboratory holding experiments, survival was 
lower among AT-tagged yearlings and subyearlings than among their PIT-tagged counterparts after 14, 
28, and 90 days of holding.  Growth tended to be greater after 90 days of holding among surviving 
PIT-tagged migrants than AT-tagged migrants.  Brown et al. (2010) also determined lower growth and 
survival rates over 30 days in fall Chinook salmon of 80- to 89-mm fork length with acoustic 
microtransmitter tag burdens > 8.2% and > 6.7%, respectively.  However, a number of studies have also 
observed no effect of acoustic tags on swimming performance, survival, travel times, detection 
probabilities, and avian predation rates (Anglea et al. 2004; Brown et al. 2006; Hockersmith et al. 2008; 
Chittenden et al. 2009; see Appendix C).  The influence of ATs on estimates of D would depend upon 
whether the potential effects were realized differently in barged and ROR fish. 

Radio Tags 

Radio tags are also typically larger than PIT tags.  Unlike PIT or AT tags, radio tags typically have an 
external antenna that must be accommodated in attaching or implanting the tag in a fish.  Radio-tagged 
fish had greater survival rates than AT-tagged fish travelling between BON and the estuary at rkm 46 
(Schreck et al. 2005).  Also, differences in migration rate between radio-tagged and acoustic-tagged 
yearling Chinook salmon could be attributed to a tagging effect or efficacy of detecting slow fish.  As for 
the other tag types, the influence of radio tags on estimates of D would depend upon whether the effects 
of tags were realized differently between barged and ROR groups. 
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4.2.12.2 Importance to D and Level of Uncertainty 

Estimation of survival - Low importance and extensive data gaps and uncertainty 
Tagging effects – Low importance and extensive data gaps and uncertainty  

Estimates of D with a higher alternative standard to compensate for bypass effects could be 
determined; but at this point, there are extensive data gaps and uncertainty related to this.  

Tagging is considered to be of low importance to D because most studies have found no differences 
in the behavior, growth, and survival between untagged fish and PIT-, AT-, or JSATS-tagged fish that 
occur across a time period equivalent to the differential travel time through the FCRPS between barged 
and ROR fish hydrosystem passage (Appendix C).   

4.2.12.3 Future Research Needs 

A low degree of importance and high degree of uncertainty make this factor of low priority for 
management and of low priority for research.  Because D is a ratio of two survivals, it is unclear how 
relatively small changes in bias from tagging would affect the ratio.  Future research is not warranted.  

4.3 Interaction of Fish Condition Versus Environmental Factors 
Affecting D  

The condition of a fish influences its ability to respond to its environment.  When factors affecting 
fish condition influence the relative ability of barged and ROR fish to respond to factors in their 
environment, the result is an interaction of these factors.  The following sections evaluate some 
interactions among factors that are hypothesized to influence D. 

Survival from smolt to adult is the result of a fish’s condition or behavior and its interactions with 
environmental factors.  Table 4.2 tabulates those interactions and provides qualitative estimates of their 
potential magnitude of influence on D.  
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Table 4.2.  Interactions Between Snake River Basin Fish Condition/Behavior and Environment.  Dots qualitatively represent potential 
magnitude of effect on D. 

Fish Condition/ 
Behavior 

Environment 
 

Prehydrosystem 
Conditions 

 
Dam Operations 

 
Barging Conditions 

 
Lower River 

Conditions & Predation 

 
Estuarine Conditions 

& Predation 

 
Oceanic 

Conditions 

 
Arrival Time & 

Travel Time 

 
Achord et al. 

2003 

 
Schaller et al. 2007 

   
Scheuerell et al. 
2009; Eder et al. 

2009a ; McMichael 
et  al. 2010 

 
Scheuerell et al. 

2009 

 
Length 

 
Crozier et al. 

2010 

 
Zabel et al. 2005 

   
Muir et al. 2006 

 
Muir et al. 2006 

 
Physiology 

  
Budy et al. 2002 

 
Congleton et al. 2000 ; 

Budy et al. 2002; 
Wagner et al. 2004 ; 
Clemens et al. 2009 

  
Schreck et al. 2006 

 
De Robertis et al. 

2005 

 
Disease 

 
Dietrich et al. 

2011 

 
Elliott et al. 1997; 

Arkoosh et al. 2006; 
Van Gaest et al. 2011 

 
Dietrich et al. 2010, 
2011; Arkoosh et al. 

2006; Van Gaest et al. 
2011 

  
Dietrich et al. 2008; 
Eder et al. 2009a, b 

 

 
Straying & 
Fallback 

  
Keefer et al. 2008a; 

Ruzycki and 
Carmichael 2010; 
Tuomikoski et al. 

2010 

    

 
Survival 

estimation and 
Tagging effects 

  
NOAA 2010;  

Buchanan et al. 2011 
 

   
Knudsen et al. 2009; 

Rub et al. 2009; 
Brown et al. 2010 

 

       



 

4.41 

4.4 Seasonal (Within-year) and Inter-annual (Across-year) D Patterns 
4.4.1 Seasonal Pattern of Factors Affecting Survival of Barged and ROR Fish 

Each of the graphs in Figure 4.14 addresses the hypothesized seasonal pattern of a different factor 
affecting the survival of barged and ROR fish, as follows: 

• Graph A (fish length) indicates that ROR fish grow as they migrate through the hydropower system 
and are approximately the same size at BON throughout the season (Muir et al. 2006; Dietrich et al. 
2007).  Barged fish lose this opportunity to grow during hydrosystem passage, but still increase in 
size throughout the season.  The survival rate generally increases with the relative length of the fish 
(Zabel and Achord 2004). 

• Graph B (osmoregulation) indicates that ROR fish have high osmoregulatory ability throughout the 
season (Congleton et al. 2005).  Barged fish increase in osmoregulatory ability throughout the season 
(Eder et al 2009a).  The survival rate increases with osmoregulatory ability. 

• Graph C (energy density) indicates that while hatchery ROR fish deplete their energetic reserves as 
they migrate through the hydropower system, the rate of decline exhibits no seasonal pattern 
(Congleton et al. 2005).  Barged fish have a negligible loss.  The parallel lines of energy density when 
plotted against arrival time at BON suggest that these factors do not interact.  The survival rate is 
hypothesized to increase with energetic reserves. 

• Graph D (disease susceptibility) indicates that although rates are variable, the pathogen prevalence in 
ROR fish generally decreases throughout the season (Dietrich et al. 2008), while in barged fish it 
generally increases (Eder et al. 2009b).  Survival is hypothesized to decrease as disease susceptibility 
increases.  However, the decreasing trend in disease susceptibility throughout the season in ROR fish 
may be due to culling of weak and diseased fish.  As well, increased disease-related mortality in 
barged fish than ROR fish may be due to the fish’s condition prior to hydrosystem entrance (Dietrich 
et al. 2011). 

• Graph E (LRE travel time) indicates that travel time in the LRE is greater in barged fish than ROR 
spring/summer Chinook salmon (Ledgerwood et al. 2007; Carter et al. 2009; Eder et al. 2009a; 
McMichael et al. 2010).  Throughout the season, travel time decreases, especially in barged 
spring/summer Chinook salmon.  Steelhead, on the other hand, do not differ in migration rate 
between barged and ROR migrants (Ledgerwood et al. 2007).  Longer residence time generally 
increases susceptibility to predation and hence decreases survival.  

• Graph F (density of birds) indicates that the predation intensity on barged and ROR fish increases 
then decreases throughout the nesting season of Caspian terns and cormorants, and concurrent to the 
salmonid outmigration run.  The seasonal pattern of juvenile salmonid survival is affected by the 
seasonal pattern of the intensity of bird predation on salmonids. 

• Graph G (alternative marine prey) represents the hypothesized increase in the survival rate of juvenile 
salmonids as the number of alternative marine prey increases.  Although the high variability in 
alternative marine prey over short time scales can occur (Emmett and Muir 2009).  Recent research 
shows that forage fish densities negatively affect SARs through possibly competitive effects or 
attraction of marine predators (Appendix D; Holsman et al. submitted).   

• Graph H (upwelling) represents the hypothesized dependence of spring and summer growth and 
survival of juvenile salmonids in the ocean on the plume and nearshore forage base, which in turn 
depends on the cumulative upwelling prior to and during their ocean entry (Pearcy 1992; De Robertis 
et al. 2005). The thick line represents the averaged upwelling across the outmigration season.  
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Figure 4.14.  Seasonal Pattern of Factors Affecting Survival of Barged and ROR Migrants 
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Estimates of SARs for groups of migrating juvenile salmon can vary widely across a season.  As 
these SARs vary differently for barged and ROR migrants, D also varies.  D for spring/summer Chinook 
salmon and steelhead is generally below 1 in the early season, increases to above 1 beginning in late April 
to early May, and drops at the end of the outmigration season (Anderson et al. 2005; Figure 4.15).   

In Period I of Figure 4.15, where D is < 1, we hypothesize barged spring/summer Chinook salmon 
and steelhead to be relatively small, to exhibit low levels of osmoregulation, to have slow travel rates in 
the LRE, and to have greater susceptibility to predation in the LRE than their in-river migrating 
counterparts.  Thus, barged fish have lower survival rates than ROR fish.   

In Period II, where D is ≥ 1, energetic reserves of ROR fish decrease while those of barged fish 
remain high and cumulative upwelling increases.  Also, barged fish increase in their osmoregulatory 
ability and length, and decrease in their travel time in the LRE.  All of these factors are hypothesized to 
result in higher survival rates in barged fish than in ROR fish.   

In Period III, where D is again < 1, we hypothesize that the increased surface-water temperatures 
result in higher rates of disease and energy loss among barged fish.  Thus, barged fish have lower survival 
rates than ROR fish.  D for fall Chinook salmon is likely lower than 1.  We hypothesize that in Period III 
of Figure 4.15 where D < 1, the low survival rates of barged fish relative to ROR fall Chinook salmon are 
caused by high surface-water temperatures, which decrease the condition and energetic reserves of barged 
fall Chinook salmon and increase disease prevalence. 

Mechanisms contributing to the seasonal pattern of D discussed above were also stated in Section 3.7 
of the 2004 CSS Workshop (Marmorek et al. 2004) under Hypothesis 2.2b, “The hydrosystem indirectly 
affects smolt-to-adult survival [rate](SAR) by changing and delaying the smolt development processes, 
through both altered timing of entry and stress.”  As depicted in Figure 4.14, the fish’s condition and the 
environmental conditions are changing over the season; and the entirety of these interactions affect the 
seasonal patterns of D, with certain factors playing more influential roles in some years than others. 

4.4.2 Inter-annual Variability  

Studies have shown that inter-annual variability (i.e., differences between years) in SARs is related to 
ocean/climate conditions (Scheuerell and Williams 2005; Zabel et al. 2006; Petrosky and Schaller 2010), 
which supports the theory of year-class strength being associated with the first year in the ocean (Pearcy 
1992; Gargett 1997; Beamish and Mahnken 2001).  Levin et al. (2001) hypothesized that survival of wild 
spring Chinook is negatively correlated with the population of hatchery spring Chinook salmon in years 
with poor ocean conditions.  High correlations between SARs and ocean upwelling in the spring and fall 
were also determined in a time-series model (Scheuerell and Williams 2005).  Petrosky and Schaller 
(2010) found that lower SARs from 1964–2006 of wild spring/summer Chinook salmon and steelhead 
were associated with warm ocean conditions and reduced spring upwelling.  In contrast, Scheuerell et al. 
(2009) determined that year was relatively the most important variable tested in their models of Chinook 
salmon and steelhead SARs.  They found that models that included year and estuary arrival time 
performed better than models that included temperature and upwelling.  Thus, significant inter-annual 
effects (i.e., year model parameter) on SARs occur in addition to explicitly tested factors.  Furthermore, 
Deriso et al. (2001) found that inter-annual effects on the survival of spring/summer Chinook salmon can 
be uncorrelated to factors such as water travel time, the North Pacific Index, and an upwelling index.  The 
existence of unidentified and unpredictable factors that have a strong influence on survival contribute to a 
more noisy set of results with which to evaluate D. 
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Figure 4.15. Upper Frame:  Representative Example of the Temporal Variations in SAR for Hatchery 

Spring Chinook in 1999 for Barged Fish () and ROR Migrants (- - -) (Anderson et al. 
2005).  Similar patterns are evident for wild spring Chinook and wild and hatchery 
steelhead.  Lower frame:  Ratio of transport to in-river SAR (T:I) for spring Chinook () 
(Anderson et al. 2005) and weekly D (•) for spring Chinook in 1999 (Muir et al. 2006).  
Arrows indicate across-year average estimates of D.  Periods indicate early season 
(Period I), where D < 1, middle season (Period II) where D ≥ 1, and late season (Period III), 
where D < 1.  Period patterns I, II, III are representative of spring/summer Chinook and 
steelhead; Period III is representative of fall Chinook. 

4.5 Summary of Importance Versus Uncertainty in D factors 
Categorizing factors by their degree of importance and their extent of uncertainty in relation to D is 

useful for identifying what is already known and what would be most useful to know for managing 
transportation of juvenile salmonids.  Table 4.3 includes each potential factor of D in the “Importance 
versus Uncertainty” matrix following the same format as Table 4.1.  The factors categorized in the top left 
cell of the matrix (i.e., high importance; limited uncertainty) can provide the most reliable insight for 
management decisions, and factors in the two top right cells (i.e., high and moderate importance; extensive 
uncertainty) are key areas for future research.  Factors in the low importance category may not necessarily 
have no effect on D, but are less influential relative to all other factors considered.  For more information 
about the categorization of each factor in context of the synthesized literature, please see Section 4.2.  
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Table 4.3. Factors of D Categorized by Degree of Importance to D and Extent of Data Gaps and 
Uncertainty.  Includes Supporting References 

 
Limited Data Gaps  

and Uncertainty 
Extensive Data Gaps  

and Uncertainty 

High 
Importance 
to D 

 Hydrosystem arrival time & 
travel time (Connor et al. 2004; 
Connor et al. 2005; Schreck et al. 
2006; Clemens et al. 2009; Eder et 
al. 2009; Scheuerell et al. 2009)  

 Fish length (Zabel and Williams 2002; Congleton et al. 
2003; Connor et al. 2004; Zabel and Achord 2004; Williams 
et al. 2005; Zabel et al. 2005; Muir et al. 2006; Eder et al. 
2009b) 

⑤ Dam operations (ISAB 2008a; Zabel et al. 2008; ISAB 
2010; NOAA 2010) 

⑧ Estuary conditions and predators (Schreck et al. 2006; 
Roby et al. 2008; McMichael et al. 2010; Roby et al. 2011a, b 

⑨ Ocean conditions (Scheuerell and Williams 2005; Zabel 
et al. 2006; Keefer et al. 2008b; Scheuerell et al. 2009) 

Moderate 
Importance 
to D 

 Adult straying in steelhead 
(Keefer et al. 2008a; Ruzycki and 
Carmichael 2010)  

 Pre-hydrosystem conditions (Zabel and Williams 2002; 
Achord et al. 2003; Connor et al. 2003; Smith et al. 2003; 
Achord et al. 2007; Sykes et al. 2009; Tiffan et al. 2009; 
Crozier et al. 2010)  

 Fish physiology (Budy et al. 2002; Congleton et al. 2001, 
2003, 2005; Schreck et al. 2006; Dietrich et al. 2007, 2008; 
Eder et al. 2009b) 

 Disease (Arkoosh et al. 2006 ; Dietrich et al. 2007 ; 
Dietrich et al. 2008 ; Mesa et al. 2008 ; Eder et al. 2009a, b ; 
Marsh et al. 2010b; Dietrich et al. 2011; Van Gaest et al. 
2011) 

⑥ Barging conditions – density; alternative barging strategy; 
warm surface water (Congleton et al. 2000; Wagner et al. 
2004; Congleton et al. 2005; McMichael et al. 2007; Ryan et 
al. 2007; Marsh et al. 2008; Clemens et al. 2009; Marsh et al. 
2010b; Sandford et al. pre-submission)  

⑦ Lower river conditions and predators in fall Chinook 
(Schreck et al. 2005; Clemens et al. 2009) 

Low 
Importance 
to D 

⑥ Barging conditions – dissolved 
metals, disrupted auditory senses 
(Halvorsen et al. 2009) 

⑦ Lower river conditions and 
predators in spring/summer 
Chinook and steelhead (Schreck et 
al. 2005; Schreck et al. 2006; Mesa 
et al. 2008; Clemens et al. 2009) 

 Adult straying in Chinook 
(Keefer et al. 2008a; Ruzycki and 
Carmichael 2010) 

 Tagging effects & estimation of survival (Anglea et al. 
2004; Brown et al. 2006; Hockersmith et al. 2008; Chittenden 
et al. 2009; Knudsen et al. 2009; Rub et al. 2009; Brown et al. 
2010; NOAA 2010) 
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4.6 Conclusion About the Synthesis of Literature on D 

Many factors have been hypothesized to play a role in D, and multiple factors are involved.  Seasonal 
trends transpire in many of these factors, including hydrosystem arrival timing, travel time, fish length, 
estuarine conditions, and avian predation.  Annual variation also occurs and is largely important in ocean 
conditions.  It is clear that to predict D, multiple factors need to be considered in the same framework, and 
a hazard model is a good conceptual starting point.  Furthermore, the analysis from the culling model 
demonstrates that the effect of heterogeneity in fish condition on delayed mortality and D can be 
formulated in a mathematically tractable and realistic manner.  The examples presented suggest that the 
effects of hydrosystem passage on survival capacity, expressed as vitality, and the subsequent effect of 
vitality on post-hydrosystem survival are likely to be important in determining SARs and D.   

The literature provides ample support for the potential of many factors to either 1) influence the 
actual value of D, or 2) influence our ability to estimate D.  One challenge in understanding whether a 
change will increase or decrease D is that many of these factors have the potential to alter the actual or 
estimated SARs of both barged and ROR fish.  A clear understanding of how barged and ROR fish will 
differ in their responses for most factors is lacking to date.  Without that understanding, it will be difficult 
to predict the direction of change in D, and even more difficult to predict the magnitude of that change.  If 
the changes in D for management’s actions are difficult to predict, it will be necessary to monitor D 
through time after changes are implemented and adaptively manage D as results become known.   
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5.0 Identifying Research Needed to Support Management 

Based on the evaluation of potential D factors, their importance, and the extent of uncertainty for 
each, we have developed a roadmap of key uncertainties and data gaps for development of future research 
actions.  We first consider the basic questions related to barging operations (Section 5.1).  We then 
present a prototype roadmap of future research including brief explanations for the basis of each item 
(Section 5.2).   

5.1 Addressing Key Management Questions 

There are many aspects of D where uncertainties could be addressed, but it is those factors with 
higher importance to D where uncertainties remain that provide the greatest potential for improving 
management actions.  The following section presents these areas relative to the primary management 
questions about barging. 

5.1.1 When to Barge 

Overall, the data and analyses available show that D increases throughout the season (Anderson et al. 
2005; NOAA 2010).  Thus, the current strategy is to begin transportation at LGR generally around May 1 
and stagger the initiation of barging at lower dams.  In some years, the seasonal pattern is more 
pronounced than in others, some recent analyses suggest that barging can occur before May 1 while 
maintaining T:I above 1 (NOAA 2010).  Although the NOAA (2010) report was an opportunistic analysis 
of data currently available, this preliminary conclusion may be enough to instigate a need for more formal 
analyses to re-examine the appropriate time to begin barging.  Also, with the recently implemented spill-
transport program, we believe a seasonal analysis of D that encompasses recent management actions is 
warranted.   

5.1.2 What Proportion of Fish to Barge 

In general, transporting fish increases SARs relative to their in-river migrating counterparts based on 
estimates of T:I (Sandford and Smith 2002; Anderson et al. 2005; Williams et al. 2005; NOAA 2010; 
Tuomikoski et al. 2010).  However, as spill increases, the relative benefit of transportation in terms of 
SARs decreases because of the increased survival of in-river migrants (ISAB 2010).  Since 2006, a mixed 
strategy of spill and transport has been implemented to “spread the risk” among species and runs 
(e.g., lamprey and salmonids including Snake River sockeye salmon and Middle Columbia steelhead; 
ISAB 2008, 2010).  Even in the 2007 and 2010 spring seasons of low flow, when transportation was 
thought to be most beneficial to the SARs of salmon relative to in-river passage, the spill-transport 
strategy was still implemented to “spread the risk” and to obtain additional data to help evaluate how flow 
affects in-river survival, T:I, and D.  Results from these 2 years of low flow with spill will most 
importantly help determine whether a strategy of no spill and full transport yields higher SAR, T:I, and D 
rates than those from a mixed strategy of spill-transport.  The various spill-transport operations will also 
help fill in data gaps across years of moderate and high flow. 
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5.1.3 Which Fish to Barge 

Some species, runs, and rearing types of salmonids benefit more from the barge transportation 
program than others (Table 2.1).  Based on estimates of D and T:I, steelhead benefit more from the 
transportation program than spring/summer Chinook salmon.  Furthermore, hatchery spring/summer 
Chinook salmon benefit more from the transportation program than their wild counterparts.  For fall 
Chinook salmon, it is largely unknown whether barge transportation increases their SARs relative to in-
river migrants.  One challenge is that the fish arriving at the hydrosystem are a mixed population, so that 
one mitigation strategy may not work for all species and rearing types of fish.  It has been hypothesized 
that large-sized spring/summer Chinook salmon benefit from the barging program, while the small-sized 
ones do not.  Sorting by size during collection at the transport dams could help separate fish also by 
species and rearing type so that those for which transportation is beneficial are diverted onto barges.   

5.1.4 Where to Begin Barging 

There is little support for or against the hypothesis that D is different across the three uppermost dams 
of the FCRPS with the limited analyses tested specifically to determine where it is best to begin 
transporting fish and given the large amount of uncertainty in these estimates.  From 1994 to 2000, D 
values across LGR, LGS, and LMN decreased because the barge-loading site was further downstream for 
hatchery spring/summer Chinook (Williams et al. 2005).  But the trend was of the opposite pattern for 
wild steelhead.  No trend was apparent for wild spring/summer Chinook and hatchery steelhead.  An 
opportunistic analysis of current data available for spring/summer Chinook salmon and steelhead 
transported from LGR and LGS showed no difference in D estimates by transport site when the 
confidence intervals were taken into consideration (NOAA 2010).  With improvements in the structure 
and operations in the FCRPS in the last decade, a more recent analysis of D by transport site is warranted.   

5.1.5 How to Barge 

Different barging conditions include fish densities, water exchange rates, fish release sites, timing of 
releases relative to the time of day and tidal cycles, and duration of barge trips.  Barging conditions found 
to be most conducive in minimizing transmission of pathogen among barged fish were low densities 
(< 0.3 lb/gal) and high water-exchange rates (5.5 exchanges per hour) (Dietrich et al. 2010).  During 
periods of high surface-water temperature replenishing barge water with cooler water drawn from below 
may lessen stress on fish.  This may be most advantageous when barging fall Chinook in the late spring 
and summer.  Results are still being collected for the investigation of the alternative barging strategy in 
which fish were released at rkm 10 instead of rkm 225.  Preliminary results show that predation rates in 
the CRE were greatly reduced.  Based on the relative adult return rates, barging to the alternative site was 
beneficial for steelhead but not for spring/summer Chinook salmon.  However, increased rates of straying 
of steelhead were observed.  For more information about these studies, please see Section 4.2.7. 

5.1.6 What Environmental Conditions Increase Barging Success? 

Many environmental factors have the potential to influence the success of the Juvenile Fish 
Transportation program.  It is important to consider whether management actions can influence those 
factors and improve the SARs of fish.  The environmental conditions in two different environments 
(upstream and through the FCRPS; LRE) are considered below. 
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5.1.6.1 Conditions Upstream of and Through the FCRPS 

It has been demonstrated that the conditions upstream of and through the FCRPS can affect the 
physiological condition, disease susceptibility, and post-hydrosystem survival of fish with barge and in-
river passage histories.  The short (1.5 days) passage by barge transportation through the hydropower 
system has been shown to result in sometimes lower osmoregulatory ability relative to ROR migrants 
(Dietrich et al. 2008; Mesa et al. 2008).  Increased mortality from disease has been observed in barged 
fish relative to ROR fish (Dietrich et al. 2011).  It has been hypothesized that incomplete smoltification, 
stress, and disease cause fish to swim higher in the water column at the freshwater-seawater interface in 
the estuary, and consequently increase avian predation risk (Price and Schreck et al. 2003; Schreck et al. 
2006).  Also, first year ocean survival rates were negatively related to slower river velocity and warmer 
river temperatures (Petrosky and Schaller 2010).  Thus, ways to increase smoltification, decrease stress, 
and decrease disease in fish prior to and during hydrosystem passage will likely increase their survival.  
For more information about fish physiology and disease related to D, see Sections 4.2.4 and. 4.2.5.  

It is possible that minimizing the stress and disease upstream of and throughout the hydrosystem 
could reduce fish mortality passing through the LRE.  However, this remains to be tested and could be 
challenging.  Also, improvements to the structure of the dams, such as spillway weirs, are thought to 
decrease the delay in the forebays and decrease the stress experienced by migrating juvenile fish.  
Increasing flow is thought to allow fish to arrive to the estuary and ocean earlier in the season and 
increase their survival (Scheuerell et al. 2009).  Various scenarios of operational conditions have been 
simulated in the COMPASS model (see Section 4.2.6.2) which can be updated with more recent 
conditions and additional covariates. 

5.1.6.2 Lower River and Estuary  

Efforts have been made to minimize overall predation of salmonids by piscivorous fish and birds 
through the Northern Pikeminnow Program and the Caspian Tern Management to Reduce Predation of 
Juvenile Salmonids in the Columbia River Estuary Program (USFWS 2005, 2006; Roby et al. 2011a, b).  
How these programs affect D is unknown.   

Furthermore, increased flow has been observed to correlate with increased travel rates of salmonids 
through the LRE (Schreck et al. 2005; Eder et al. 2009a).  Decreased temporal exposure could decrease 
predation risk in the estuary.  The exact effects of increased flow on survival upon ocean entry are unclear 
but are thought to be related to matching the timing of coastal upwelling, avoiding avian and marine fish 
predators, and competing with other forage fish for food resources (Pearcy 1992; Scheuerell et al. 2009; 
Holsman et al. in review).   

5.2 Roadmap of Future Research  

The existing literature about the effectiveness of transporting juvenile salmon and steelhead 
documents temporal and spatial patterns of SAR and D.  These patterns are evidence that some factors are 
more influential on D than others.  What remains unknown has been ranked by degree of importance and 
extent of uncertainty to provide a roadmap that can guide future research.  The goal of that research is to 
further improve the ability of fish managers to plan a transportation program that improves adult returns 
and to provide the understanding necessary to quickly adapt the program as conditions change. 
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5.2.1 Key Research Questions 

In general, the synthesis of factors affecting D revealed that in the current transportation program 
barging improves post-hydrosystem survival of hatchery and wild steelhead while transportation later in 
the season improves survival in hatchery spring/summer Chinook salmon, and transportation is 
detrimental to or has neutral effects on wild spring/summer Chinook salmon and hatchery and wild fall 
Chinook salmon.  In this synthesis report, the hypotheses identified to explain these patterns related to 
fish condition, fish behavior, and environmental conditions.  Some hypotheses are well supported by the 
research conducted so far, while others  that may be important to controlling the patterns of D are not well 
established.  We suggest that improvements in the transportation program require research to further 
clarify the potentially important, but uncertain hypotheses, and identify which of the underlying factors in 
all the hypotheses can be addressed by changes in operation of the transportation program.   

To assist in identifying future research we constructed a list of questions that cover the extensive data 
gaps in D mechanisms (Table 5.1), based on the synthesis of the literature, discussions at the workshop, 
and the categorization of factors in the “Importance versus Uncertainty” matrix.  This roadmap is 
intended to identify the most promising areas of research for improving the ability to select among actions 
for the management of transportation.  In addition, the roadmap is intended to identify studies that can 
resolve data gaps and key uncertainties related to D as well as identify conditions and practices that could 
result in higher values of D and SAR of barged fish.  The proposed future research falls into the three 
major categories of 1) fish condition, 2) fish behavior and 3) environmental conditions (Table 5.1).  
Interactions between these categories occur and are identified within the structure of the roadmap where 
necessary. 

5.2.2 Towards a Real-Time Transportation Program 

It is evident from the synthesis that fish condition and behavior and the condition of the environment 
are dynamic processes that vary throughout the transport season and across years.  Fish condition and 
behavior can vary dramatically across the season as different runs, rearing types, and species enter the 
hydrosystem.  Likewise, the LRE and ocean environments are highly dynamic.  The spring transition 
results in the onset of upwelling and changes in the coastal current structure, while the river flows 
increase with the spring freshet and then decrease in the summer.  Although an improved understanding 
of these factors and their interactions is expected to increase with the conduct of the research identified in 
Table 5.1, it is evident that to take advantage of the knowledge and maximize the effectiveness of the 
transportation program decisions about when and which fish to transport will require real-time 
information about fish entering the hydrosystem and projections of the LRE and ocean environments 
when they exit the hydrosystem.  Developing such a transportation program will require integration of 
real-time fish and environmental monitoring programs.  Indices to be monitored not only require 
mechanistic and statistical foundations, they also need to be quickly and routinely measured.  Some 
potential indices that are identified in the roadmap to future research (Table 5.1) include the following:   

• fish length  
• fish physiological condition, e.g., insulin-like growth factor, condition factor 
• fish pathogen load  
• water travel time in the lower river downstream of BON and in the CRE  
• proportion of water spilled across various levels of water flow  
• timing, location, and number of hatchery releases  
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• biomass of zooplankton 
• number of forage fishes  
• number of piscivorous predators in the CRE and coastal ocean. 

We anticipate that decisions of which fish and when to transport them will need to be based on 
predictive models that account for changes in fish condition and culling of weaker fish within and 
downstream of the hydrosystem (see examples in Section 3.0).  In addition, transport decisions will 
require real-time monitoring and predictions of the estuary and coastal ocean environments over times 
scales of days to weeks, i.e., over the travel times of barged and ROR fish through the hydrosystem.  
Finally, we envision decisions being implemented via a web-based decision support tool that combines 
relevant historical and real-time data and predictive models of D and SAR. 
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Table 5.1. Key Research Questions of Differential Delayed Mortality with Comments on Relevance to Transportation Program and Research 
Approaches 

 D Factor 
Research 
Questions 

Relevance to  
Transportation Program Research Approaches 

Research 
Duration  Research Challenges 

Fi
sh

 C
on

di
tio

n 
 

Fish size  Is low D expressed 
in small-sized fish 
and not in the large-
sized fish? 

If yes, structures and procedures 
could be developed to collect 
larger-sized fish for transport.  
This would increase D and hence 
the effectiveness of the program.   

Analysis of length and SAR of 
PIT-tagged fish.  Also, 
determining whether critical 
sizes are associated with 
species, runs, and rearing types 
throughout the season. 
Determine fish lengths from 
scales and otoliths. 

A few to several 
years 

Measuring length of fish 
near the times they enter 
and exit the hydrosystem is 
difficult.  Accounting for 
growth after measurement 
may be important. Analysis 
of fish scales and otoliths 
may alleviate this challenge. 

Physiological 
Condition  

What physiological 
conditions are 
associated with low 
D, particularly in the 
LRE? 

A mechanistic understanding 
would help illuminate processes 
that influence seasonal patterns 
of D.  Efforts examining 
physiological indices could be 
continued to determine 
appropriate times to barge fish.   

Monitoring energetic reserves, 
degree of smoltification, stress 
indices, and IGF-1 at LGR, 
BON, in the LRE (via mobile 
Separation by Code), and in the 
coastal ocean 
  
Challenge studies in laboratory 
or field setting can complement 
PIT-tag surveys of SARs, 
especially for fall Chinook 
salmon, which require 
extensive tagging to obtain 
reliable SARs. 

Several years to 
decades depending 
on type of study or 
monitoring program 

Substantial variation can 
occur in indices of fish 
physiological condition, 
making it difficult to relate 
to SARs and D.  Composite 
variables may help alleviate 
this challenge (Wagner and 
Congleton 2004).  
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Table 5.1  (contd) 

 D Factor Research Questions 
Relevance to  
Transportation Program Research Approaches 

Research 
Duration  Research Challenges 

Fi
sh

 C
on

di
tio

n 
 (c

on
td

) 

Fish size  Do pathogens 
differentially affect 
post-BON survival of 
barged and ROR fish? 

If yes, procedures could be 
developed to minimize 
collection of diseased fish 
and/or reduce pathogen 
transmission within barges.  
Barge conditions that minimize 
pathogen transmission have 
been determined (Dietrich et al. 
2010) and could be 
implemented.  Pathogen 
controls could be developed if 
pathogens were determined to 
be a major contributor to low 
SARs.  

Longitudinal field studies to 
measure pathogen prevalence 
and pathogen load of 
independent but parallel 
groups of barged fish and 
their ROR counterparts at 
LGR, BON, and in the LRE 
throughout the season. 

Several years to 
decades 

Pathogen prevalence varies 
seasonally, annually, 
spatially, and across 
pathogen species, making it 
challenging to determine 
effects of pathogens on 
SARs or D.  However, tools 
are available for determining 
associations between 
pathogens and D (see 
Section 5.1.3; Van Gaest et 
al. 2011). 

Fi
sh

 B
eh

av
io

r 

Behavior in the 
River  

Is there a collection 
bias for weaker(a) fish 
in the juvenile bypass 
system?  If so, does 
condition cause fish to 
swim higher in the 
water column where 
entrainment into the 
bypass system occurs?   

If yes, a mechanism underlying 
the procedures of the 
transportation program that 
contribute to low D is revealed.  
Corrections in estimates of D 
and/or improvements in 
structures and operations could 
be implemented. 

PIT-tagging fish over a range 
of lengths, physiological 
conditions, and health 
statuses and releasing them 
upstream of a dam.  
Determine the relationship 
between fish characteristics 
and probability of 
entrainment into the bypass 
system. 

Several years Ensuring the passage 
behavior of test fish mimics 
that of the run-at-large fish. 

Behavior in the 
Estuary 
 

What causes slow 
travel rates in the 
estuary in barged fish 
relative to their ROR 
counterparts? 

A mechanistic understanding of 
the relatively slow travel rates in 
barged fish could help 
determine ways to increase 
travel rates and possibly lower 
predation risk.  

Determine whether 
incomplete smoltification, 
especially in early season 
barged fish, results in lower 
travel rates in the CRE.  

Several years Sampling JSATS-tagged fish 
after passage through 
portions of the CRE may be 
challenging.  Sample sizes 
may be insufficient for 
robust conclusions.  
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Table 5.1 (contd) 

 D Factor Research Questions 
Relevance to  
Transportation Program Research Approaches 

Research 
Duration  Research Challenges 

E
nv

ir
on

m
en

ta
l C

on
di

tio
ns

 

Mixed Spill-
Transport 
Strategy  

What are the effects of 
proportion of water 
spilled and proportion 
of fish transported 
(which are closely 
linked) on D across a 
range of flow rates? 

Predicted survival rates and D 
related to this question would 
help evaluate the mixed spill-
transport strategy implemented 
since 2006.  A better 
understanding of seasonal in-
river conditions could also help 
determine appropriate times to 
begin and end barging. 

Data analysis and 
simulations (e.g., COMPASS 
model).  Annual and seasonal 
patterns could be examined. 

Several years Uncertainty is an important 
part of the predicted 
responses.  Expressing the 
uncertainty in a readily 
comprehensible way may be 
challenging.  Also, passage 
improvements will require 
re-analysis. 

Hatchery 
Releases  

How do hatchery 
releases downstream 
of BON and MCN(b) 
affect survival of 
barged and ROR fish 
in the estuary and D?   
 

Timing of hatchery releases 
could help alleviate predation 
risk of barged and ROR 
migrants. 

Data analysis and 
simulations.  

Several years Although large numbers of 
hatchery fish may reduce 
predator exposure for both 
barged and ROR fish, these 
benefits may be reduced by 
increased competition for 
food resources.  Such 
competition could reduce 
growth of fish during critical 
periods and poor ocean 
conditions 

Estuary 
Conditions  

What and how are 
seasonal estuary 
conditions associated 
with survival of 
barged and ROR 
migrants in the CRE? 

Indices could be developed to 
determine appropriate times to 
implement barging.   

Data analysis and 
simulations of estuary 
conditions indices (e.g., flow, 
turbidity, and percent smolt 
in avian predator diets) in 
relation to seasonal 
differential survival rates. 

Several years to 
decades 

Determining indices with 
sufficient predictive power 
and time scale of forecast for 
seasonal management of the 
transportation program. 
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Table 5.1 (contd) 

 D Factor Research Questions 
Relevance to  
Transportation Program Research Approaches 

Research 
Duration  Research Challenges 

E
nv

ir
on

m
en

ta
l C

on
di

tio
ns

 (c
on

td
) Ocean 

Conditions  
How do seasonal 
ocean conditions 
affect with D? 

Indices could be developed to 
gain a better understanding of 
mechanisms affecting D.   

Data analysis and modeling 
of ocean condition indices 
(e.g., water temperature, 
turbidity, upwelling, forage 
fish, and predators) in 
relation to differential SARs 
across the season and years 

Several years to 
decades 

Determining indices with 
sufficient predictive power 
and time scale of forecast for 
seasonal management of the 
transportation program. 

(a) Weaker fish may be considered weaker based on the metrics of fish size, physiological condition, and disease status. 
(b) Post-BON refers to the area where hatchery releases can affect ROR and barged fish survival, while post-MCN refers to the area where hatchery releases 

downstream of the dams that participate in the barge transportation program can affect ROR fish survival. 
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