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BACKGROUND FOR THISWHITE PAPER

The 2000 Federal Columbia River Power System (FCRPS) Biologica Opinion (FCRPS
Biop) evaluated whether the operation of the FCRPS, when combined with survival rates
expected to occur in al other life stages of ESA listed salmonids, would result in a*“high
likelihood of survival and a moderate-to-high likelihood of recovery.” This qualitative
determination was informed by quantitative estimates for severa evolutionarily significant units
(ESU) Specificaly, NOAA Fisheries evauated:

whether or not there would be a 5% or lower probability of absolute extinction of natural

spawners within 24- and 100-year periods as a “metric indicative of survival;”

whether or not there would be at least a 50% probability of the 8-year geometric mean

natural spawners being equal to, or greater than, interim recovery abundance levelsin 48

and 100 years as a primary “metric indicative of recovery;”

and whether or not there would be at least a 50% likelihood of the annual population

growth rate (“lambda’) being equal to, or greater than, 1.0 as an adternate “metric

indicative of recovery” for populations lacking interim recovery abundance goals.

The basis for each of these indicator metrics was an analysis of the population growth
rate associated with time series for relevant spawning aggregations. Population growth rate was
calculated using the methods described in McClure et a. (2003). The Biological Opinion
specified that several tests based on population growth rate would be conducted in 2005 and
2008 to ensure that implementation of the Biological Opinion was on track and that populations
were not declining further. The Biological Opinion assumed that by 2005 there would be more
information about methods of calculating population growth rate, so it specified the following:

“NMFS anticipates that methods of assessing annua population growth rates will have
been refined, based on NMFS' research efforts, those of the Action Agencies, or those of
independent scientists. In anticipation of this norma progress in scientific methods,
NMFS does not now define a specific method by which population growth rate will be
determined for its mid-point evaluations. By March 1, 2005, NMFS will choose the most
appropriate method(s) to estimate population growth rate from the peer-reviewed
literature, based on collaboration with the Action Agencies, USFWS, and the state and
Tribal comanagers.”

In June 2003, the Biological Opinion was remanded in National Wildlife Federation v.
NMFES. NOAA Fisheriesis currently in the process of revising the Biological Opinion and re-
evaluating the effects of FCRPS operations and offsite mitigation activities. To facilitate this
process, the NOAA Fisheries Northwest Regional Office (NWRO) requested that the Northwest
Fisheries Science Center (NWFSC) conduct the above-referenced review of population growth
rate estimation methods in 2003. In addition, the NWRO requested that that the NWFSC review
related methods of characterizing population trends, especialy those that had been suggested as
alternativesto “lambda’ estimation in comments on the draft of the original Biological Opinion
and in comments or litigation since the Biological Opinion was issued.
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INTRODUCTION

The purpose of thisreport is to review and discuss methods for estimating and presenting
population trends and extinction risks for Columbia River salmonid populations to support
management decisions, such as the ESA Section 7 determination in the 2000 FCRPS Biological
Opinion and the anticipated 2005 and 2008 check-in tests. This report reviews research since
2000, which tests and validates diffusion approximation methods for estimating population
trends and risks. This review summarizes information from the following publications:

Holmes, E. E. 2004. Beyond theory to application and evaluation: diffusion approximations for
population viability analysis. In pressin Ecological Applications.

Fagan, W. F., E. E. Holmes, J. J. Rango, A. Folarin, J. A. Sorensen, J. E. Lippe, and N. E.
Mclntyre. 2003. Cross-validation of quasi-extinction risks from real time series: an
examination of diffusion approximation methods. Pre-print.

McClure, M., E. Holmes, B. Sanderson, and C. Jordan. 2003. A large-scale, multi-species risk
assessment:  anadromous salmonids in the Columbia River Basin. Ecologica
Applications 13: 964-989.

Holmes, E. E. and W. F. Fagan. 2002. Validating population viability analysis for corrupted data
sets. Ecology 83: 2379-2386

Holmes, E. E. 2001. Estimating risksin declining populations with poor data. Proceedings of
the National Academy of Science 98: 5072-5077.

Summary of work and changes as they pertain to the methods in FCRPS Biop

Changes in the methods for estimating trend and risk:

1) Running sum filter has been standardized to use a smple sum of four consecutive
spawner counts. The work leading up to Holmes & Fagan (2002) clarified that this was better
than the age-structure based running sum that was originally used.

Cross-validation work

The bulk of the work has focused on validating the methods using real time series
(Holmes & Fagan 2002, Fagan et al. 2003) and more redlistic smulations that include density-
dependence (Holmes 2004). Also the underlying assumptions of the diffusion model were tested
using simulations of salmon models with density-dependence (Holmes 2004).

Expressing uncertainty

Holmes & Fagan (2002) test the variability in parameter estimates from the Dennis-
Holmes method and found that the variability is properly estimated. Holmes (2004) begins
looking in-depth at how to express uncertainty in away that it can best inform regulatory
decision-making. Confidence intervals are commonly given, but are not very useful beyond
showing that there is high or low uncertainty. Bayesian approaches are explored in Holmes
(2004). A Bayesian metricisalso used in McClure et al. (2003), specifically the probability that
| islessthan 1.0 or less than 0.9.
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THE NATURE OF POPULATION TRAJECTORIESAND RISK ESTIMATION

Real populations do not grow or decline at fixed rates, but rather show year-to-year
variability in population growth rates, which leads to a population trend that varies about some
long-term growth rate. Figure 1 shows an example of three population trends that each have the
same long-term trend (5% per year decline) and the same year-to-year variability. Even though
the population trends were generated with the same underlying dynamics, the trgectories are
different. Thisis nature of populations. random chance means that there are arange of different
possible population tragjectories given some underlying population dynamics. Even though we
cannot predict exactly what will happen in the future, if we could estimate the underlying
dynamics governing the population tragjectories, we could estimate the probability of different
futures, i.e. we could estimate the probability of reaching critical thresholds. We can also
estimate whether the population has long-term declining dynamics. To do this, we will need to
estimate the following: the long-term rate of decline (or growth), the year-to-year variability in
yearly population growth, and the amount of corruption in our data. Within the population
dynamics literature, the year-to-year variability in yearly population growth is termed ‘ process
error’; note that it is not technically ‘error’ in the layman’s sense of the word, but rather
variability. Therest of the variability istermed ‘non-process error’ and this includes actual
observations errors. For the purpose of this review, one can think of process error asthe
variability that drives the long-term variability of future population size and the non-process
error as the data corruption that is preventing us from estimating the process error.
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Figure 1. Sample simulated population trajectories from a population with average 5% yearly
decline. The underlying population dynamics are identical. The differences are due to chance.
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Theterm | denotes the long-term rate of population decline (or growth). Itissimply the
long-term trend that you would observe if you had avery, very long time series of the
population. Theterm | isthe standard notation in the conservation biology literature. | =1
means stable, | = 1.01 means roughly increasing 1% per year, and | = 1.05 means roughly
increasing 5% per year. Similarly, | =0.99 and| = 0.95 mean roughly declining 1% and 5% per
year, respectively. Note that we can only estimate | ; we never know the true | . Our estimates
may be unbiased, but that still means that there is a 50/50 chance that the true | is above or
below our estimate.

One of the most common questionsis“If | isthe population trend, why not just present
the overal trend observed in the data, such as aregression of log numbers versustime?’ as
opposed to going through the analysis based on theory concerning the dynamics of population
trajectories, which is presented in the next section. There are two main reasons why thisis
insufficient.

1) We need to estimate uncertainty. The trend tells you what happened but does not by
itself tell you how likely it isthat this trend happened by chance and that the long-term dynamics
are actualy quite different. For example, suppose we collect data on a population that has atrue
long-term average rate of decline of 12% yearly. Figure 2 shows an example of the population
trend observed from 20-year consecutive time series from this population. Segment 1 isfrom
year 1-20, segment 2 is from year 2-21, etc. The wavy lines show the estimates using different
methods for estimating the trend; the true value is the straight dashed line. The solid line (“ML")
isasimple regression of log natural abundance. The wavy dashed line shows the runsum
method used in McClure et al. (2003) and the Biop. There is much variability in the observed
trend in a 20-year segment. This variability is an unavoidable aspect of analyzing stochastic
population processes. Population dynamics theory allows us to estimate this year-to-year
variability and thus estimate how likely it is that a particular observed trend came from a
population with a particular true | (such as an increasing or declining population). But to do
this, the estimate of the underlying process error in the population dynamicsis needed. A natural
response would be to argue that standard regression analyses will give you the uncertainty of the
estimated trend, but unfortunately such analyses attribute all error to non-process error and will
give you incorrect uncertainty estimates.

2) We need to estimate probabilities of crossing critical thresholds. The trend by itself
does not give much information about the probability of dropping below critical population sizes.
We cannot simply extend the trend into the future and see when our line crosses the threshold.
Populations vary from year to year and even a population that has a positive growth rate still has
some probability of dropping below the critical threshold by chance. To estimate this
probability, we again need to estimate the process error driving the variability in long-term
population sizes.

In the following section (section 1), | review how the parameters driving a population
process are estimated using diffusion approximation methods. This section aso reviews the
extensive cross-validation work that was done to verify the applicability of these methods for
salmon populations. This section directly applies to the methods used in the FCRPS Biological
Opinion. At the end of this section, there is a discussion of alternative risk estimation
methodol ogies and why they were not used. The next section (section I1) discusses work that
goes beyond the methods used in the 2000 FCRPS Biological Opinion. One of the challenges
when presenting scientific analysesis presenting the uncertainty in a useful and accurate manner.
It is tempting to use the point estimates of risk metrics (i.e. ‘this stock hasal of 0.981') and
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ignore that thisis a statistical estimate. | = 0.981 may be the most likely value given the data,
but | =0.99 is probably ailmost equally aslikely and | = 1.01 may be entirely plausible. Section
Il illustrates the use of probability curves as away to formally express this uncertainty. Thisisa
standard approach in decision theory for resource management.
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Figure 2. Estimated log(l ) from 20-year segments in a time series. Segment 1 is year 1-20,
segment 2 isyear 2-21, segment 3 isyear 3-22, etc. This shows how the estimates vary depending
on the segment observed. The “runsum” method is that used in McClure et a. (2003) and for the
Biological Opinion calculations.

. DIFFUSION APPROXIMATION METHODS FOR POPULATION VIABILITY
ANALYSIS

In the last decade, diffusion approximation (DA) methods have been devel oped that use
count data alone (for example, spawner counts) for the estimation of population viability analysis
(PVA) risk metrics, such as the probability of crossing extinction thresholds, mean passage
times, and average long-term rates of population growth or decline (Lande and Orzack 1988,
Denniset a. 1991). These methods have since been used to estimate extinction risks for
numerous species of conservation concern (Dennis et al. 1991, Nicholls et a. 1996, Gerber et a.
1999, Morris et a. 1999, McClure et al. 2003). The appea of DA methods from an applied
standpoint is their smplicity and their reliance on simple census data alone (e.g. neither age-
structure, cohort-level analyses, or total fish numbers are required). They have become one of
the basic quantitative tools presented in recent books on PVA methods (Morris and Doak 2002,
Lande et al. 2003).

Diffusion approximation methods stem from theory concerning the behavior of stochastic
age-structured population models with no density-dependence,
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where A; is the stochastic population transition matrix, e.g. aLedie matrix, for timet. Note that
most types of cohort or otherwise age-structured population simulations with no density-
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dependence are specific cases of the genera model in Eq. 1. For such models, the asymptotic
behavior of the total population size, N, = é N, , isastochastic exponential process

(Tuljapurkar and Orzack 1980, Tuljapurkar 1989):
N, = N,exp(m +e,), e, ~normal(0,s °t) fort big. [2]

and log Ni/Ny is distributed normal with mean=nt and variance=s for t big. The parameter min
Eqgn. 2 determines the rate at which the median log population size, log N;, increases through
time, while s? determines the rate at which the distribution spreads, or in other words, the
variability of potential population sizes at time t+t.

Diffusion approximation methods assume that Egn. 2 holdsfor al t > 0 including small t
and that the e are independently and identically distributed. This allows one to model the
population as a diffusion process (Lande and Orzack 1988):

Mo/t = - nfip/ Ix+ (s >/ 2)1° p/ x>

p=PUogN, =x|N, =X,)
P(y) means the probability of y. The diffuson model has the property that log Ni/No is
distributed normal (mean=nt, variance=s*) like the stochastic exponential processit is used to
approximate. See Dennis et al. (1991) for amuch fuller discussion of the diffusion
approximation.

This approximation opens atoolbox of parameterization methods for linear models with
normal error. It aso provides anaytical estimates of quasi-extinction probabilities, i.e. the
probability of crossing a particular threshold at some time within a given time frame. Strictly
speaking, however, an age-structured population processis not a diffusion process. However
despite the assumption violations, the diffusion model approximates many types of stochastic
age-structured popul ation processes, as seen both from simulated and real data (Lande and
Orzack 1988, Dennis et al. 1991, Holmes and Fagan 2002, Fagan et al. unpublished manuscript,
Holmes 2004). In particular as will be reviewed below, the diffusion approximation works well
for salmon population models (Holmes 2004).

[3]

Parameter estimation methods

Diffusion approximations for a particular PV A must be carefully selected since a poor
choice results in poor, highly biased estimates which lead to poor, highly biased risk estimates.
Holmes (2004) discusses these issues and careful selection of parameterization methods using
salmon data as an example. McClure et al. (2003) presents methods for estimating log(l ) and
s, which have been used by NWFSC scientists for salmon PVA. These methods have been
extensively validated with real and simulated salmon data (see next section).

The basic estimation methods currently used for the Biop are presented here without
discussion; see McClure et a. (2003) for a discussion and examples. The methods use arunning
sum transformed time series of spawner counts defined as

3
R =40, [4]
i=0
where O, is the spawner count at year t. The estimate for log(l ), which is denoted m is
My, = mean of log(R.,, /R,)
fort=123,...,k- 3.
The estimate of s? uses the rate that the variance increases within the time series:

[5]
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S ¢, = sopeof varglogaERL%lJ versus t, intercept free
é R o« [6]
fort =1,23,...,k- 3and maximumt =4.

These estimators will likely appear somewhat peculiar on first introduction. Note that the
mestimate is very similar to alinear regression of log population counts (typically log spawner
counts). Why use the estimator with a running sum transformation of the data? Extensive
testing described in Holmes (2001), Holmes & Fagan (2002) and especially Holmes (2004)

indicates that the 1M, givesthe least variable estimates of m(see also Figure 2). Estimation of

the process error is an especially difficult problem. Holmes (2004) reviews the currently
available methods in the literature. Again extensive cross-validation work (see especialy

Holmes 2004) found that s’ g, performs the best for salmon data.

One of the difficult problems with analyzing salmon spawner datais that hatchery fish
are input into the stocks. Perhaps the easiest way to see how this presents a problem for
estimating | isto consider the analogy of amutual fund. Suppose you put $1000 into a mutual
fund 5 years ago and now you have $8000. Y ou would like to know what the average rate of
return (thisis| ) has been so that you can decide whether to keep you money in this fund or
move to another. Normally, you would just take (8000/1000)*(1/5) = 1.51, which means that
your fund returned an incredible 51% per year. However, your benevolent aunt has been
automatically adding $100 a month to your brokerage account, and you need to factor thisin
(these are the hatchery fish). Problem isyou don’t know whether her monthly gift was added to
your mutual fund (the hatchery fish reproduce) or was simply deposited to your brokerage
account but not invested (the hatchery fish don’'t reproduce). Without this information, you can
only deduce the range of the possible average rates of return for your mutual fund. 1f not added
to mutual fund, the rate of return was ( (8000-100* 12*5)/1000 )*(1/5) = 1.15, which is still a
nice 15% per year. If added to the mutual fund, rate of return isfound by finding the | that

solves:
12*5

8000 = 1000*| 75 + 100* § | /2,
i=0

whichis| = 1.05and means arather paltry 5% per year growth. Thus, knowing whether the
monthly deposits were added to your mutual fund or not isa critical bit of information you need
to evaluate how good a mutua fund you have. Thisis exactly the estimation problem we have
with hatchery fish. We need to know whether or not they are reproducing in order to evaluate
the underlying population growth rate. In McClure et a. (2003) and in Holmes (2004), the
hatchery correction is presented. Inthe McClureet a. PVA, therange of | for hatchery fish not
reproducing versus are reproducing is shown. For the Biological Opinion, therangeof | is
shown for hatchery fish reproducing 20% as effectively as wild-born fish versus 80% as well as
wild-born fish.

Risk metrics

From the parameters mand s, a number of different risk metrics can be calculated. We
have focused on two metrics. Thefirst isthe median yearly growth rate or the long-term yearly
growth rate, which isdenoted | . Suppose you were able to observe 1000 20-year population
trajectories with the same underlying dynamics (i.e. the same mand s? parameters) and each
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starting from the sameinitial size, much like Figure 1. The trgectories would all ook different
due to chance. The yearly growth rate you observed in the i™ (out of the 1000) trajectory is

| i =[(end population size)/(start population size)](1/(number of years)-1)
Themedian | ; from al 1000 would be exp(m); on average 50% of trajectories would show a
yearly growth rate greater than exp(n) in those 20 years and 50% would show alower growth
rate. An estimate of this median yearly growth rate iswhat weterm | . It also happens to be the
yearly growth you would observe from avery long time seriessince | ; goes to exp(n) asthe
number of years getsvery large. Thisiswhy thel estimateisreferred as an estimate of the
median yearly growth rate or the long-term yearly growth rate. For a particular time series with
nyears thel estimateis

" = exp(i,, =ﬁlog(Rn.3/ R) [7]

The second metric is the probability of hitting a particular critical population threshold,
Ne, Within some period of time te, starting from the population size No. Thisis calculated from a
diffusion approximation of the population process (Dennis et al. 1991):

2@ In(N,/N,) +|f. | t 0
Pr(N0® Ne by te):p¢k Fg n( 0/,\ e)+|mun| eI
8 Sdp\/E ]

& In(NO/Ne)_ |mun| teg

+exp(2In(N, /N, )|/, /S 3,)F & L ot.>0  [§
° S P
i, if m_£0 U
where p(t::':L Mhn g

Texp(' 2r,i‘]'un In(NO/Ne)/§§p’ if r,i‘]'un > OE

The function F is the standard normal cumulative distribution function. If you are interested in
percentage-wise declines, e.g. 50%, 75% or 90%, then it is not necessary to know the actual
population size, since (No/XNp) = (1/X). In this case, the probability of crossing critical thresholds
can be estimated using on index data without information on the total number of spawners. If
however, declines to specific absolute thresholds are of interest, total spawner counts are needed
and it is also necessary to transform the spawner count into a count that reflects the total
population rather than just spawnersin aparticular year. See McClure et a. (2003) for a
discussion of this transformation.

Validation studies of diffusion approximations for salmon populations

Here | review cross-validation studies of the performance of the diffusion approximation
model for salmon data and populations, including populations experiencing density dependence.
Holmes (2004) discusses evaluation of the diffusion approximation and estimation methods
using smulated data. This study used detailed population models for Upper Columbia River
steelhead, Snake River fall chinook, and Snake River spring/summer chinook as examples. The
models were parameterized from survivorship and fecundity data from these ESUs. The models
include density-dependence in parr to smolt survivorship reflecting that found in low density
Snake River chinook stocks (Achord et al. 2003). The models also include sampling error in the
range of that observed for redd-count data (standard error 0.3 to 0.85).

Thefirst question in this study was whether a diffusion approximation correctly described
the behavior and probability of crossing thresholds for the age-structured models. The first test
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described in Holmes (2004) is an examination of the linearity assumptions inherent in the
diffusion approximation. Thiskey test is somewhat technical, and is described in Holmes
(2004). The results of thistest were that the linearity assumptions were satisfied for t > 5 years
which means that (as is well-known) the diffusion approximation should be used to make
medium and long-term projections not short-term projections (t < 5 years). The second test was
whether a diffusion approximation would properly characterize the probability that the simulated
time series would cross a threshold (in this case, 90% decline) in different time frames. This
anadysisis shown in Figure 3. The gray line shows the actual probability of crossing the 90%
decline threshold within different time frames (determined by repeating the salmon simulations
1000s of times) versus the probabilities from a diffusion approximation. Thisillustrates that the
probability of 90% decline in these salmon time series can be described by a diffusion
approximation.
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Figure 3. Actual versus predicted probability of 90% decline within different time horizons.
From Holmes (2004).

Simply because a diffusion approximation exists which properly characterizes a
particular population process does not mean that we can estimate the parameters for that process
given redlistic data constraints. Holmes (2004) also studies estimation performance given data
constraints faced by the PVA of Columbia River sailmon stocks (McClure et a. 2003): 1) counts
of only the spawning segment of the populations, 2) time series limited to 20 years, 3) severe
age-structure perturbations in the beginning of some time series due to reproductive collapses
during dam construction (Williams et a. 2001), and 4) high observation error in the spawner
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counts. Figure 4 shows box plots of the estimates of log(l ) following the estimation methods
described above (also in McClure et al. 2003) for 1000 random simulations from the three
species models. The output from the models (spawner counts) was ‘ corrupted’ by different
levels of sampling error: age (meaning an age perturbation due to no reproduction in one year),
low, medium and high observer error. The dotted line in the graph shows the true value of
log(l ). Inthe box plots, the middle line is the median estimate of log(l ) and the box encloses
75% of the estimates. As can be seen in the figure, the runsum method for estimating log(l )
works for these simulated salmon time series even within the data constraints; the median
estimate is the true value even with added observer error in the spawner counts.

Spr/Sum Chinook Fall Chinook Steelhead

1 1 1 1 1 1 1 1 1 1 1 1 1 1 ]
Mome Age Low Med High Mons Age Low Med High Mons Age Low Med High

Type of Error Added

JapoafFeovy

loa(l ) estimate

Figure 4. Distribution of log(l ) estimates using ﬁ}un from 1000 simulated time series from age-

structured models of Snake River spring/summer chinook, Snake River fall chinook, and Upper
Columbia steelhead. The models include density-dependent smolt survivorship. From Holmes
(2004).

Figure 5 shows asimilar analysis for the estimation of the process error, termed s2. Recall that
the process error specifies the variability of potential future population trgjectories and is a key
parameter determining the probability of crossing thresholds. This analysisindicates that for low

observation error S ¢, provides an unbiased estimate of the true value of s 2, but as observation
error increased, the estimate becomes increasingly biased. ‘Medium’ represents the average
estimate of typical observation error in the Columbia River data based on studies of observer
error in redd count data (see discussion in Holmes 2004).
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Figure 5. Distribution of S jp estimates from 1000 simulated time series from age-structured

models of Snake River spring/summer chinook, Snake River fall chinook, and Upper Columbia
steelhead. The models include density-dependent smolt survivorship. From Holmes (2004).
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Simulated data is very useful, however it is‘ssimulated’ and certainly lacks some aspects
of real time series data. Another cross-validation (Holmes and Fagan 2002) involved testing the
bias and precision of the diffusion approximation parameter estimates using hundreds of real
time series. The strategy was to use the first 15 years of atime seriesto predict the second 15
years of the time series. The bias and variability of these predictions could then be tested against
the predicted bias and variability. The two parameters tested were log(l ) and s?, which appears
in the probability of crossing thresholds metric along with log(l ). Figure 6 shows the results of
thisanalysisfor thelog(l ) estimates. This analysisinvolved 30-year time series within a 1920 to
1999 time frame.
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Figure 6. Distribution of actual log(l ) estimates (bars) versus predicted distribution (solid black
line from 147, 42 and 47 chinook, steelhead and Snake R spring/summer time series respectively.
From Holmes and Fagan (2002).

The close match between the observed and predicted distributions indicates that the log(l )
estimate was properly characterized in terms of its mean value (the peaks match). That isthe
mean trend in the first half of the time series was the same as the mean trend estimated in the
second half of the time series. Figure 6 also demonstrates that the uncertainty in the log(l )
estimate (its variability) was also properly characterized since the width of the distributions
match.

That the mean trend in the first 15 years was the same as the mean trend in the second 15
years appears at first glance to contradict the observations of strings of ‘good years' versus ‘bad

mind that this analysis used 30-year time series across the 1920 to 1999

period. It was asking about the average estimate across different time periods. What about
estimates only during a specific time period? Figure 7 shows the difference between the trend in
the first 15 years of atime series versus the following 15 years for specific time frames, i.e., not
the average across al time periods, but the average if you only look at time seriesin a specific
time period, say 1970-1999. The solid lineis a measure of the difference between the trendsin
the first 15 years versus the following 15 years. Deviations above zero indicate that on average
there was a more declining trend in the first 15 years versus the next 15; while deviations below
zero means that on average the population was declining less in the first 15 years versus the next
20 years. These results show the average difference from all the West Coast time series put
together. What you can seeis that across the West Coast, stocks were on average declining more
in 1959-1973 versus in 1974-1993 while the opposite was true for 1964-1978 versus 1979-1998.
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Figure 7. The solid line measures the difference between the average trend in the first 15 years
versus in the second 15 years from a collection of 30 year time series of West Coast chinook and
steelhead stocks (200+ stocks). “Mean of t-statistics” = 0 means that the average trend (across the
whole West Coast) was similar in the first 15 years versus the following 15 years. “Mean of t-
statistics’ > 0 means that the on average stocks were declining more in the first 15 yearsrelative to
the following 15 years. The year on the x-axis denotes the start of the middle of the 30-year
segment. The dashed line is the 95% confidence intervals for a random collection of time series,
i.e, if there were no underlying environmental cycles causing “good” and “bad” series of years.
Holmes unpublished analyses.

It is tempting to attribute these ‘good’ versus ‘bad’ strings of years to an environmental
driver, such as ocean conditions that one could presumably model. While this may be the case,
the data by themselves do not necessarily support this since this type of cycling good and bad
strings of years can happen simply by chance in a collection of stochastic population time series.
Indeed thisiswhat Figure 2 illustrates. The dotted linesin Figure 7 show the 95% confidence
intervals assuming that the time series were all completely independent. Thisis a conservative
estimate since they are not al independent and the true 95% confidence intervals are farther
apart. What we can see isthat the solid line falls within the conservative 95% confidence
intervals suggesting this West Coast pattern of good and bad strings of years is not inconsi stent
with the hypothesis that it occurred by chance.

The Holmes and Fagan (2002) analysis aso looked how well the diffusion approximation
predicted the probability of 90% decline. This analysis searched for a difference between the
mean diffusion approximation estimates of the probability of 90% decline and the observed
mean probabilities within the collection of West Coast salmon time series. Figure 8 shows the
estimated versus actual mean probabilities. The gray solid line (Dennis-Holmes) is the method
used in the salmon PVA (McClure et a. 2003). The close correspondence between the actuad
and observed indicates that first the diffusion approximation approach is correctly estimating the
mean probabilities and second that the parameters of this approximation were not being
systematically misestimated. Note that this analysis focuses on mean estimates of probability of
decline. Theissue of the variability in estimates of probability of declineis addressed later in
this document.

E. E. Holmes, National Marine Fisheries Service
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Figure 8. Probability of 90% decline versus observed probabilities with the West Coast salmon
time series. From Holmes and Fagan (2002).

Why the diffusion approximation approach versus other approachesfor describing trends
and risksin salmon populations?

Diffusion approximation approaches for estimation of risk metrics are grounded in
theoretical work on stochastic population processes (reviewed in Holmes and Fagan 2002 and
Holmes 2004). These methods are one of the basic quantitative tools in population viability
analysis and are featured in two current books on quantitative methods for analyzing population
data (Lande et al. 2003, Morris and Doak 2003). The long-term rate of population growth is
termed | and is one of the most commonly used risk metrics within the field of conservation
biology. Notethat| does not refer to a specific method of estimation, but rather smply the
median or long-term trend in the population. There are a variety of methods for estimating | .
The most familiar within the conservation biology literature isto calculate | from estimated
Ledlie matrix models. Diffusion approximation approaches present away to estimate | when
only time seriesis available, and present a method for estimating the uncertainty in | , which
estimated L eslie matrix models do not provide.

However in the context of salmon management, traditionally other metrics of risk and
population trend have been used. Some of the typical metrics that have been used or suggested
are log recruits per spawner, SARS, 8-year geometric means of the natural cohort return rate, a
simple regression of log natural abundance versus time, and residuals from a stock/recruit
relationship. Some of these (log recruits per spawner and a regression of the log abundance
versus time) have aclose relationship to| and indeed can be viewed as aternate methods for
estimating | . Many of the other methods, however, differ in afundamental way in that they
measure only a portion of thelife cycle, i.e., survivorship or fecundity of only certain stages

E. E. Holmes, National Marine Fisheries Service
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rather than from spawner to spawner. One of the key aspects of | isthat it integrates across the
entirelife-cycle. It isnot ameasure of one stage’ s survivorship or fecundity alone, but rather of
the integration of survivorship and fecundity over the entire life cycle, much like a spawner-to-
Spawner ratio does. Thisisimportant when oneis trying to assess a population rather than a
particular stage since high survivorship in one stage can easily be offset by low survivorship in
another stage.

Below the methods that have been more common in salmon management are discussed in
terms of how they relateto| and the estimation long-term population trends.

Log recruits to the spawning grounds per spawner

L og recruits (to the spawning ground) per spawner is another way to estimate log(l )
since the expected value of In(R/S) =log(l ). This can be derived from theory on stochastic
population processes (see review by Caswell 2001, 14.3.2) and is essentially what is shown by
Eqgn 14.47 in Caswell (2001) — although this probably will not be transparent on first glance.
Obvioudly the estimates you get of log(l ) from Eq. 5 versus In(R/S) are going to be different for
a specific finite time series; you expect this using different methods even though the expected
values (the average estimates) are identical.

If In(R/S) can be used to estimate log(l ), why not use that since it is more familiar for
fisheriesbiologists? First it is not a more accurate nor less variable estimator —a simple
simulation demonstrates this. Second it requires much more data and effort to estimate — despite
not providing an increase in precision in the estimation of log(l ). To the extent that the age-at-
return data contains errors this adds additional errorsto the In(R/S) estimate. Third, if we want
to compare stock status for example to prioritize recovery actions, using a consistent method
across all stocksiscritical. For the vast mgority of stocks, the additional datato estimate R/Sis
not available so we can’t estimate In(R/S). Fourth, establishing the uncertainty in the estimate of
In(R/S) would be difficult. We would either have to model the error in age-at-return data, which
would require some ad hoc assumptions since we have limited information on this error, or we
would have to bootstrap from limited age-at-return data. Fifth, we would still have to estimate
the process error and estimating this from In(R/S) data alone is not possible if the populatio